Faithful Squashed Entanglement
with applications to separability testing and quantum Merlin-Arthur games

Fernando G.S.L. Brandão¹
Matthias Christandl²
Jon Yard³

1. Universidade Federal de Minas Gerais, Brazil
2. ETH Zürich, Switzerland
3. Los Alamos Laboratory, USA
Mutual Information: Measures the correlations of A and B in ρ_{AB}

$$I(A:B)_\rho := S(A)_\rho + S(B)_\rho - S(AB)_\rho$$
Mutual Information vs Conditional Mutual Information

Mutual Information: Measures the correlations of A and B in ρ_{AB}

$$I(A:B)_\rho := S(A)_\rho + S(B)_\rho - S(AB)_\rho$$

Always positive: $I(A:B)_\rho \geq 0$ (subadditivity of entropy)
Mutual Information vs Conditional Mutual Information

Mutual Information: Measures the correlations of A and B in ρ_{AB}

\[
I(A:B)_{\rho} := S(A)_{\rho} + S(B)_{\rho} - S(AB)_{\rho}
\]

Always positive: $I(A:B)_{\rho} \geq 0$ (subadditivity of entropy)

When does it vanish? $I(A:B)_{\rho} = 0$ iff $\rho_{AB} = \rho_A \otimes \rho_B$
Mutual Information vs Conditional Mutual Information

Mutual Information: Measures the correlations of \(A \) and \(B \) in \(\rho_{AB} \)

\[
I(A:B)_\rho := S(A)_\rho + S(B)_\rho - S(AB)_\rho
\]

Always positive: \(I(A:B)_\rho \geq 0 \) (subadditivity of entropy)

When does it vanish? \(I(A:B)_\rho = 0 \) iff \(\rho_{AB} = \rho_A \otimes \rho_B \)

Approximate version? Pinsker’s inequality:

\[
I(A:B) \geq \frac{1}{2 \ln 2} \left\| \rho_{AB} - \rho_A \otimes \rho_B \right\|_1^2
\]

Remark: **dimension-independent**! Useful in many application in QIT (e.g. decoupling, QKD, ...)
Conditional Mutual Information: Measures the correlations of A and B relative to E in ρ_{ABE}

$$I(A:B|E)_{\rho} := S(AE)_{\rho} + S(BE)_{\rho} - S(ABE)_{\rho} - S(E)_{\rho}$$
Mutual Information vs Conditional Mutual Information

Conditional Mutual Information: Measures the correlations of A and B relative to E in ρ_{ABE}

$$I(A:B|E)_\rho := S(AE)_\rho + S(BE)_\rho - S(ABE)_\rho - S(E)_\rho$$

Always positive: $I(A:B|E)_\rho \geq 0$ (strong-subadditivity of entropy) (Lieb, Ruskai ’73)
Conditional Mutual Information: Measures the correlations of A and B relative to E in ρ_{ABE}

$$I(A:B|E)_\rho := S(AE)_\rho + S(BE)_\rho - S(ABE)_\rho - S(E)_\rho$$

Always positive: $I(A:B|E)_\rho \geq 0$ (strong-subadditivity of entropy)

When does it vanish?

$I(A:B|E)_\rho = 0$ iff ρ_{ABE} is a “Quantum Markov Chain State”

(E.g. $\rho_{ABE} = \sum_k p_k \rho_k^A \otimes \rho_k^B \otimes |k\rangle^E \langle k|$)
Mutual Information vs Conditional Mutual Information

Conditional Mutual Information: Measures the correlations of A and B relative to E in ρ_{ABE}

$$I(A:B|E)_\rho := S(AE)_\rho + S(BE)_\rho - S(ABE)_\rho - S(E)_\rho$$

Always positive: $I(A:B|E)_\rho \geq 0$ (strong-subadditivity of entropy)

(Lieb, Ruskai ‘73)

When does it vanish?

$I(A:B|E)_\rho = 0$ iff ρ_{ABE} is a “Quantum Markov Chain State”

(Hayden, Jozsa, Petz, Winter ‘04)

E.g.
$$\rho_{ABE} = \sum_k p_k \rho_k^A \otimes \rho_k^B \otimes |k\rangle^E \langle k|$$

Approximate version??? ...
Outline

• $I(A:B | E) \approx 0$ characterization

• Applications:
 - Squashed Entanglement
 - de Finetti-type bounds
 - Algorithm for Separability
 - A new characterization of QMA

• Proof
No-Go For Approximate Version

A naïve guess for approximate version (à la Pinsker):

\[I(A : B | E) \geq \Omega \left(\min_{\sigma = \sum_k p_k \sigma_A^k \otimes \sigma_B^k \otimes |k\rangle_E \langle k|} \left\| \rho_{ABE} - \sigma_{ABE} \right\|_1^2 \right) \]
No-Go For Approximate Version

A naïve guess for approximate version (à la Pinsker):

\[
I(A : B \mid E) \geq \Omega \left(\min_{\sigma = \sum p_k \sigma_A^k \otimes \sigma_B^k \otimes \langle k \rangle_E \langle k \rangle} \| \rho_{ABE} - \sigma_{ABE} \|_1^2 \right) \geq \Omega \left(\min_{\sigma = \sum p_k \sigma_A^k \otimes \sigma_B^k} \| \rho_{AB} - \sigma_{AB} \|_1^2 \right)
\]

\(\ll \)

O(\(|A|^{-1}) \ll \Omega(1)

\(\ll \)

It fails badly!

E.g. Antisymmetric Werner state \((\text{Christandl, Schuch, Winter '08}) \)
Main Result

Thm: (B., Christandl, Yard ’10)

$$I(A : B \mid E) \geq \Omega \left(\min_{\sigma \in SEP} \| \rho_{AB} - \sigma_{AB} \|^2 \right)$$
Main Result

Thm: (B., Christandl, Yard ’10)

\[I(A : B | E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)
Main Result

Thm: (B., Christandl, Yard ’10)

\[I(A : B | E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)

Pointed out yesterday by David Reeb
Main Result

Thm: (B., Christandl, Yard ’10)

\[I(A : B \mid E) \geq \Omega \left(\min_{\sigma \in \text{SEP}} \left\| \rho_{AB} - \sigma_{AB} \right\|^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)

The Euclidean (Frobenius) norm:

\[\| X \|_2 = \text{tr}(X^T X)^{1/2} \]
Main Result

Thm: (B., Christandl, Yard ’10)

\[I(A : B | E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)

The trace norm:

\[\| X \|_1 = \frac{1}{2} + \frac{1}{2} \max_{0 \leq A \leq I} |\text{tr}(AX)| \]

\[\| \rho - \sigma \|_1 : \text{optimal bias} \]
Main Result

Thm: (B., Christandl, Yard ’10)

\[I(A : B | E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)

The LOCC norm:

\[\| X \|_{LOCC} = \frac{1}{2} + \frac{1}{2} \max_{0 \leq A \leq I} |\text{tr}(AX)| : \{A, I-A\} \text{ in LOCC} \]

\[\| \rho - \sigma \|_{LOCC} : \text{optimal bias by LOCC} \]
Main Result

Thm: (B., Christandl, Yard ’10)

\[I(A : B \mid E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)

The one-way LOCC norm:

\[\|X\|_{\text{LOCC}(1)} = \frac{1}{2} + \frac{1}{2} \max_{0 \leq A \leq I} |\text{tr}(AX)| : \{A, I-A\} \text{ in one-way LOCC} \]

\[\|\rho-\sigma\|_{\text{LOCC}} : \text{optimal bias by one-way LOCC} \]
The Power of LOCC

Thm: (B., Christandl, Yard ’10)

\[I(A : B | E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|_2^2 \right) \]

(Euclidean norm or (one-way) LOCC norm)

(Matthews, Wehner, Winter ‘09) For X in \(A \otimes B \)

\[\|X\|_1 \geq \|X\|_{LOCC} \geq \|X\|_{LOCC}^\rightarrow \geq \Omega \left(\|X\|_2 \right) \geq \Omega \left((\|A\|B)^{-1/2} \|X\|_1 \right) \]

Interesting one, uses a covariant random local measurement
(Christandl, Winter ‘04) **Squashed entanglement:**

\[E_{sq}(\rho_{AB}) = \inf_{\pi} \left\{ \frac{1}{2} I(A:B|E)_\pi : \text{tr}_E(\pi_{ABE}) = \rho_{AB} \right\} \]

Open question: Is it faithful? i.e. Is \(E_{sq}(\rho_{AB}) > 0 \) for every entangled \(\rho_{AB} \)?
Squashed Entanglement

(Christandl, Winter ‘04) Squashed entanglement:

\[E_{sq}(\rho_{AB}) = \inf_{\pi} \left\{ \frac{1}{2} I(A:B|E)_{\pi} : \text{tr}_{E}(\pi_{ABE}) = \rho_{AB} \right\} \]

Open question: Is it faithful?

i.e. Is \(E_{sq}(\rho_{AB}) > 0 \) for every entangled \(\rho_{AB} \)?

Corollary:

\[E_{sq}(\rho_{AB}) \geq \Omega \left(\min_{\sigma \in SEP} \| \rho - \sigma \|^{2}_{LOCC} \right) \]
Squashed Entanglement

(Christandl, Winter ‘04) Squashed entanglement:

$$E_{sq}(\rho_{AB}) = \inf_\pi \left\{ \frac{1}{2} I(A:B \mid E)_\pi : \text{tr}_E(\pi_{ABE}) = \rho_{AB} \right\}$$

Corollary

$$E_{sq}(\rho_{AB}) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho - \sigma \right\|_{LOCC}^2 \right)$$

Proof:

From

$$I(A : B \mid E) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\|_{LOCC(1)} \right)$$

Follows:

$$E_{sq}(\rho_{AB}) \geq \Omega \left(\min_{\sigma \in SEP} \left\| \rho - \sigma \right\|_{LOCC(1)}^2 \right)$$

General two-way LOCC: monotonicity of squashed entanglement under LOCC
Entanglement Zoo

<table>
<thead>
<tr>
<th>Measure</th>
<th>E_{sq}</th>
<th>E_D</th>
<th>K_D</th>
<th>E_C</th>
<th>E_F</th>
<th>E_R</th>
<th>E_R^∞</th>
<th>E_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalisation</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>faithfulness</td>
<td>y</td>
<td>n</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>LOCC monotonicity</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>asymptotic continuity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>convexity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>strong superadditivity</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>?</td>
<td>n</td>
<td>n</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>subadditivity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>monogamy</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>?</td>
</tr>
</tbody>
</table>
Entanglement Zoo

<table>
<thead>
<tr>
<th>Measure</th>
<th>E_{sq}</th>
<th>E_D</th>
<th>K_D</th>
<th>E_C</th>
<th>E_F</th>
<th>E_R</th>
<th>E_R^∞</th>
<th>E_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalisation</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>faithfulness</td>
<td>y</td>
<td>n</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>LOCC monotonicity</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>asymptotic continuity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>convexity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>strong superadditivity</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>?</td>
<td>n</td>
<td>n</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>subadditivity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>monogamy</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>?</td>
</tr>
</tbody>
</table>
Entanglement Monogamy

Classical correlations are shareable:

\[\sigma_{AB_1,\ldots,B_k} = \sum_j p_j \sigma_{A,j} \otimes \sigma_{B,j}^{\otimes k} \]

Def. \(\rho_{AB} \) is \(k \)-extendible if there is \(\rho_{AB_1\ldots B_k} \) s.t. for all \(j \) in \([k]\) \(\text{tr}_{B_j}(\rho_{A_1\ldots B_k}) = \rho_{AB} \)

Separable states are \(k \)-extendible for every \(k \).
Entanglement Monogamy

Quantum correlations are non-shareable:

\[\rho_{AB} \text{ entangled iff } \rho_{AB} \text{ not } k \text{-extendible} \text{ for some } k \]

- Follows from: **Quantum de Finetti Theorem** (Stormer ’69, Hudson & Moody ’76, Raggio & Werner ’89)

E.g. - Any pure entangled state is not 2-extendible
- The \(d \times d \) antisymmetric state is not \(d \)-extendible
Entanglement Monogamy

Quantitative version: For any k-extendible ρ_{AB},

$$\min_{\sigma \in SEP} \| \rho - \sigma \|_1 \leq O \left(\frac{|B|^2}{k} \right)$$

- Follows from: finite quantum de Finetti Theorem (Christandl, König, Mitchson, Renner ‘05)
Entanglement Monogamy

Quantitative version: For any k-extendible ρ_{AB},

$$\min_{\sigma \in \text{SEP}} \| \rho - \sigma \|_1 \leq O \left(\frac{|B|^2}{k} \right)$$

- Follows from: finite quantum de Finetti Theorem (Christandl, König, Mitchson, Renner ’05)

Close to optimal: there is a state ρ_{AB} s.t.

$$\min_{\sigma \in \text{SEP}} \| \rho - \sigma \|_1 \geq \Omega \left(\frac{|B|}{k} \right)$$

(guess which? 😊)

For other norms ($\| * \|_2$, $\| * \|_{\text{LOCC}}$, ...) no better bound known.
Corollary For any k-extendible ρ_{AB}, with $\| * \|_2$ equals $\| * \|_2$ or $\| * \|_{LOCC}$

$$\min_{\sigma \in \text{SEP}} \| \rho - \sigma \| \leq O\left(\frac{\log |A|}{k} \right)^{\frac{1}{2}}$$

Bound proportional to the (square root) of the number of qubits: exponential improvement over previous bound
Exponentially Improved de Finetti type bound

Corollary For any k-extendible ρ_{AB}, with $\|\cdot\|$ equals $\|\cdot\|_2$ or $\|\cdot\|_{\text{LOCC}}$

$$\min_{\sigma \in \text{SEP}} \|\rho - \sigma\| \leq O \left(\frac{\log|A|}{k} \right)^{\frac{1}{2}}$$

Proof: E_{sq} satisfies monogamy relation (Koashi, Winter ’05)

$$E_{sq}(\rho_{A:B\overline{B}}) \geq E_{sq}(\rho_{A:B}) + E_{sq}(\rho_{A\overline{B}})$$

For ρ_{AB} k-extendible:

$$\log|A| \geq E_{sq}(\rho_{A:B_1\ldots B_k}) \geq kE_{sq}(\rho_{AB}) \geq kO\left(\min_{\sigma \in \text{SEP}} \|\rho - \sigma\|^2 \right)$$
Exponentially Improved de Finetti type bound

Corollary For any k-extendible ρ_{AB}, with $||*||$ equals $||*||_2$ or $||*||_{LOCC}$

$$\min_{\sigma \in SEP} \|\rho - \sigma\| \leq O \left(\frac{\log |A|}{k} \right)^{\frac{1}{2}}$$

(Close-to-Optimal) There is k-extendible state ρ_{AB} s.t.

$$\min_{\sigma \in SEP} \|\rho - \sigma\|_{LOCC} \geq \Omega \left(\frac{\log |A|}{k} \right)$$
particular that the intrinsic information only vanishes if there exists a channel to random variables of entanglement measures, such as Hastings' counterexample to the additivity conjecture of the minimum the authors of the main reference. Many recent results listed in this table have significance beyond the study of squashed entanglement.

TABLE I: If no citation is given, the property either follows directly from the definition or was derived by the authors of the main reference.

Squashed entanglement is the quantum analogue of the intrinsic information which is defined as

\[I(S) = \min_{\rho_{AB}} D(\rho_{AB} || \rho_A \otimes \rho_B) \]

where \(D \) is the relative entropy of the state \(\rho_{AB} \). It has been shown that the minimisation can be restricted to separable states,

\[I(S) = \min_{\rho_{AB} \in \text{separable states}} D(\rho_{AB} || \rho_A \otimes \rho_B) \]

and hence conclude that the minimisation is extendible. Whereas our work does not allow us to derive a dimension bound on the system resulting in

\[I(S) = \min_{\rho_{AB} \in \text{separable states}} D(\rho_{AB} || \rho_A \otimes \rho_B) \]

such that

\[(\sqrt{2})^{2} = 2 \]
The separability problem

When is ρ_{AB} entangled?
- Decide if ρ_{AB} is separable or ε-away from separable

Beautiful theory behind it (PPT, entanglement witnesses, symmetric extensions, etc)

Horribly expensive algorithms

State-of-the-art: $2^O(|A| \log (1/\varepsilon))$ time complexity

(Doherty, Parrilo, Spedalieri ‘04)
The separability problem

When is ρ_{AB} entangled?
- Decide if ρ_{AB} is separable or ε-away from separable

Hardness results:
(Gurvits ‘02) NP-hard with $\varepsilon=1/\exp(d)$
(Gharibian ‘08, Beigi ‘08) NP-hard with $\varepsilon=1/poly(d)$
(Beigi&Shor ‘08) Favorite separability tests fail
(Harrow&Montanaro ‘10) No $\exp(O(d^{2-\delta}))$ time algorithm for membership in any convex set within $\varepsilon=\Omega(1)$ trace distance to SEP, unless ETH fails

ETH (Exponential Time Hypothesis): SAT cannot be solved in $2^{o(n)}$ time
(Impagliazzo&Paruti ’99)
Quasi-polynomial Algorithm

Corollary There is a $\exp(O(\varepsilon^{-2}\log|A|\log|B|))$ time algorithm for deciding separability (in $||*||_2$ or $||*||_{\text{LOCC}}$)
Quasi-polynomial Algorithm

Corollary There is a $\exp(O(\varepsilon^{-2}\log|A|\log|B|))$ time algorithm for deciding separability (in $||*||_2$ or $||*||_{\text{LOCC}}$).

The idea (Doherty, Parrilo, Spedalieri ’04)

Search for a $k=O(\log|A|/\varepsilon^2)$ extension of ρ_{AB} by SDP

$$\exists \, \pi_{AB_1,\ldots,B_k} \succeq 0 : \pi_{AB_j} = \rho_{AB} \quad \forall \quad j \in [k]$$

Complexity SDP of size

$$|A|^2 |B|^{2k} = \exp(O(\varepsilon^{-2}\log|A|\log|B|))$$
Quasi-polynomial Algorithm

Corollary There is a $\exp(O(\epsilon^{-2}\log |A|\log |B|))$ time algorithm for deciding separability (in $||*||_2$ or $||*||_{\text{LOCC}}$)

NP-hardness for $\epsilon = 1/\text{poly}(d)$ is shown using $||*||_2$

From corollary: the problem in $||*||_2$ cannot be NP-hard for $\epsilon = 1/\text{polylog}(d)$, unless ETH fails
Best Separable State Problem

BSS(ε) Problem: Given X, approximate \(\max_{|a,b\rangle} \langle a, b | X | a, b \rangle \) to additive error \(\epsilon \)

Corollary There is a \(\exp(O(\epsilon^{-2} \log |A| \log |B| (||X||_2^2))) \) time algorithm for BSS(\(\epsilon \))
Best Separable State Problem

BSS(ε) Problem: Given X, approximate $\max \langle a, b \mid X \mid a, b \rangle_{|a\rangle,|b\rangle}$ to additive error ε

Corollary There is a $\exp(O(\varepsilon^{-2} \log |A| \log |B| (||X||_2^2)))$ time algorithm for BSS(ε)

The idea Optimize over $k=O(\log |A| \varepsilon^{-2} (||X||_2^2))$ extension of ρ_{AB} by SDP

$$\min \text{tr}(\pi X) : \pi_{AB_1,\ldots,B_k} \geq 0, \quad \pi_{AB_j} = \rho_{AB} \quad \forall \quad j \in [k]$$
Best Separable State Problem

BSS(ε) Problem: Given X, approximate $\max_{|a\rangle,|b\rangle} \langle a, b | X | a, b \rangle$ to additive error ϵ.

Corollary There is a $\exp(O(\epsilon^{-2} \log |A| \log |B| (||X||_2^2)))$ time algorithm for $\text{BSS}(\epsilon)$.

(Harrow and Montanaro ‘10): $\text{BSS}(\epsilon)$ for $\epsilon=\Omega(1)$ and $||X||_\infty \leq 1$ cannot be solved in $\exp(O(\log^{1-v}|A| \log^{1-\mu}|B|))$ time for any $v + \mu > 0$ unless ETH fails.
A language L is in QMA if for every x in L:

QMA:
- **YES** instance: Merlin can convince Arthur with probability $> 2/3$
A language L is in QMA if for every x in L:

QMA:
- YES instance: Merlin can convince Arthur with probability $> 2/3$
- NO instance: Merlin cannot convince Arthur with probability $> 1/3$
QMA

- Quantum analogue of NP (or MA)
- Local Hamiltonian Problem, ...

Is QMA a robust complexity class?

(Aharonov, Regev ‘03) superverifiers doesn’t help
(Marriott, Watrous ‘05) Exponential amplification with fixed proof size
(Beigi, Shor, Watrous ‘09) logarithmic size interaction doesn’t help
Corollary QMA doesn’t change allowing \(k = O(1) \) different proofs if the verifier can only apply LOCC measurements in the \(k \) proofs.
Corollary QMA doesn’t change allowing $k = O(1)$ different proofs if the verifier can only apply LOCC measurements in the k proofs

Def $\text{QMA}_{m,s,c}(k)$: analogue of QMA with k proofs, proof size m, soundness s and completeness c.

New Characterization QMA
New Characterization QMA

Corollary QMA doesn’t change allowing $k = O(1)$ different proofs if the verifier can only apply LOCC measurements in the k proofs.

Def $\text{QMA}_{m,s,c}(k)$: analogue of QMA with k proofs, proof size m, soundness s and completeness c.

Def $\text{LOCCQMA}_{m,s,c}(k)$: analogue of QMA with k proofs, proof size m, soundness s, completeness c and LOCC verification procedure along the k proofs.
New Characterization QMA

Corollary

\[\text{QMA} = \text{LOCCQMA}(k), \quad k = O(1) \]

\[\text{LOCCQMA}_{m,s,c}(2) = \text{QMA}_{O(m^2 \varepsilon^{-2}), s+\varepsilon, c} \]

Contrast: \(\text{QMA}_{m,s,c}(2) \) not in \(\text{QMA}_{O(m^2 - \delta \varepsilon^{-2}), s+\varepsilon, c} \)

for \(\varepsilon = O(1) \) and \(\delta > 0 \) unless Quantum ETH* fails

Follows from Harrow and Montanaro ‘10 (based on Aaroson et al ‘08)

* Quantum ETH: SAT cannot be solved in \(2^{o(n)} \) quantum time
New Characterization QMA

Corollary

\[
\text{QMA} = \text{LOCCQMA}(k), \quad k = O(1)
\]

\[
\text{LOCCQMA}_{m,s,c}(2) = \text{QMA}_O(m^2\varepsilon^{-2}), s+\varepsilon, c
\]

Idea to simulate \(\text{LOCCQMA}_{m,s,c}(2)\) in QMA:

- Arthur asks for proof \(\rho\) on \(\text{AB}_1\text{B}_2\ldots\text{B}_k\) with \(k = m\varepsilon^{-2}\)
- He symmetrizes the \(B\) systems and apply the original verification procedure to \(\text{AB}_1\)

Correcteness

de Finetti bound implies:

\[
\min_{\sigma \in \text{SEP}} \left\| \rho_{\text{AB}_1} - \sigma \right\|_{\text{LOCC}} \leq \sqrt{\frac{m}{k}} = \varepsilon
\]
Proof
Relative Entropy of Entanglement

The proof is largely based on the properties of a different entanglement measure:

Def Relative Entropy of Entanglement (Vedral, Plenio ‘99)

\[
E_R^\infty(\rho_{AB}) := \lim_{n \to \infty} \frac{E_R(\rho_{AB}^\otimes n)}{n}, \quad E_R(\rho_{AB}) := \min_{\sigma \in SEP} S(\rho \parallel \sigma)
\]

\[
S(\rho \parallel \sigma) := tr(\rho(\log \rho - \log \sigma))
\]
Entanglement Hypothesis Testing

Given (many copies) of ρ_{AB}, what’s the optimal probability of distinguishing it from a separable state?
Entanglement Hypothesis Testing

Given (many copies) of ρ_{AB}, what’s the optimal probability of distinguishing it from a separable state?

Def Rate Function: $D(\rho_{AB})$ is maximum number s.t. there exists $\{M_n, I-M_n\}, 0 < M_n < I$,

$$\min_{\sigma \in SEP} tr(M_n \sigma) \leq 2^{-nr}, \quad tr(M \rho_{AB}^{\otimes n}) \geq \Omega(1)$$

$D_{LOCC}(\rho_{AB})$: defined analogously, but now $\{M, I-M\}$ must be LOCC
Entanglement Hypothesis Testing

Given (many copies) of ρ_{AB}, what’s the optimal probability of distinguishing it from a separable state?

Def Rate Function: $D(\rho_{AB})$ is maximum number s.t there exists $\{M_n, I-M_n\}$, $0 < M_n < I$,

$$\min_{\sigma \in SEP} tr(M_n \sigma) \leq 2^{-nr}, \quad tr(M \rho_{AB}^\otimes n) \geq \Omega(1)$$

$D_{LOCC}(\rho_{AB})$: defined analogously, but now $\{M, I-M\}$ must be LOCC

(B., Plenio ‘08) \quad D(\rho_{AB}) = E_R^\infty(\rho_{AB})$

Obs: Equivalent to reversibility of entanglement under non-entangling operations
Proof in 1 Line

\[I(A : B \mid E)_{\rho_{ABE}} \geq E_R^\infty(\rho_{A:BE}) - E_R^\infty(\rho_{A:E}) \geq D_{LOCC}(\rho_{A:B}) \geq \Omega \left(\min_{\sigma \in SEP} \| \rho_{A:B} - \sigma \|_{LOCC(1)}^2 \right) \]
Proof in 1 Line

\[I(A : B \mid E) \rho_{ABE}^{(i)} \geq E_R^\infty(\rho_{A:BE}) - E_R^\infty(\rho_{A:E}) \geq D_{LOCC}(\rho_{A:B}) \geq \Omega \left(\min_{\sigma \in SEP} \| \rho_{A:B} - \sigma \|_{LOCC(1)}^2 \right) \]

Relative entropy of Entanglement plays a double role:

(i) Quantum Shannon Theory: State redistribution Protocol
 (Devetak and Yard ‘07)

(ii) Large Deviation Theory: Entanglement Hypothesis Testing
 (B. and Plenio ‘08)

(iii) Entanglement Theory: Faithfulness bounds
First Inequality

\[I(A : B \mid E)_{\rho_{ABE}} \overset{(i)}{\geq} E_{R}^{\infty}(\rho_{A:BE}) - E_{R}^{\infty}(\rho_{A:E}) \]

Non-lockability:

\[E_{R}(\rho_{A:BE}) \leq E_{R}(\rho_{A:E}) + 2 \log |B| \]

(Horodecki3 and Oppenheim ‘04)

State Redistribution: How much does it cost to redistribute a quantum system? \(\frac{1}{2} I(A:B \mid E) \)

\(A \mid B \ E \mid F \rightarrow A \mid E \mid BF \)

\(|\psi\rangle_{A:BE:F}^{\otimes n} \rightarrow |\psi\rangle_{A:E:BF}^{\otimes n} \)

(i) Apply non-lockability to \(\rho_{A:BE}^{\otimes n} \) and use state redistribution to trace out B at a rate of \(\frac{1}{2} I(A:B \mid E) \) qubits per copy
Second Inequality

\[E_R^\infty(\rho_{A:BE}) - E_R^\infty(\rho_{A:E}) \geq D_{LOCC(1)}(\rho_{A:B}) \]

Equivalent to:

\[D(\rho_{A:BE}) \geq D(\rho_{A:E}) + D_{LOCC(1)}(\rho_{A:B}) \]

Monogamy relation for entanglement hypothesis testing

Idea: Use optimal measurements for \(\rho_{AE} \) and \(\rho_{AB} \) achieving \(D(\rho_{AE}) \) and \(D_{LOCC(1)}(\rho_{AB}) \), resp., to construct a measurement for \(\rho_{A:BE} \) achieving \(D(\rho_{A:BE}) \)
Third Inequality

$$D_{LOCC(1)}(\rho_{A:B})^{(iii)} \geq \Omega\left(\min_{\sigma \in SEP} \|\rho_{A:B} - \sigma\|_{LOCC(1)}^2\right)$$

Pinsker type inequality for entanglement hypothesis testing

Idea minimax theorem + martingale like property of the set of separable states
Open Question

• Can we prove a lower bound on $I(A:B|E)$ in terms of distance to “markov quantum chain states”?

• Can we close the LOCC norm vs. trace norm gap in the results (hardness vs. algorithm, LOCCQMA(k) vs QMA(k))?

• Are there more applications of the bound on the convergence of the SDP relaxation?

• Are there more application of the main inequality?
Thanks!