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Problem 1

Using first order time dependent perturbation theory, with the Hamiltonian
given as:
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x2 = H(0)+εH(1)(t),

(1)
we assume that the wave function have following form:

|ψ(t)〉 =
∑
n

dn(t)e−iE
(0)
n t/~|n(0)〉; where H(0)|n(0)〉 = E(0)

n |n(0)〉. (2)
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)
. Putting this form back into Eq(1), we can get:
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Now considering the expansion for dn(t) as:

dn(t) = d(0)
n (t) + εd(1)

n (t) +O(ε2) + · · · (4)

we can rewrite the Eq(3) by their ε orders:
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Using the initial condition, |ψ(t = 0)〉 = |0(0)〉, i.e. the ground state of

unperturbated Hamiltonian, we can fix d
(0)
n (t) = δn,0and put it into second

line of Eq(5) to get:
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First, we calculate 〈n(0)|x2|0(0)〉 for the last term. Note that the x2 can be
rewritten in terms of the creation and annihilation operator:
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√
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)
, (7)

so we have
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=
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As a result, the Eq(6) becomes:
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For n = 2:
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where ∆E
(0)
2 = 2~ω0, while d

(1)
n (t) = 0 for other excited states and we don’t

need the d
(1)
0 . Since the H(T ) = H(0) and |n(T )〉 = |n(0)〉, we can get the

possibility to find the particle at excited state n as:
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Problem 2

Before going to the detail, we need to note that here our initial and final
states are the ground state and the E > 0 propagating wave of the potential
V (r < r0) = 1

2mω
2(r2 − r2

0) and V (r > r0) = 0. This is not really the
harmonic potential we met before (so we can not use the a/a†). We’d discuss
them respectively. As stated in the problem, approximating the ground state
as the harmonic ground state is our first assumption. The reason to do this
is that the wavefunction of the harmonic ground state drops as ∼ e−r2 like a
Gaussian, so as long as the r0 cut is far enough, the wave function can’t feel
it at all. Quantitatively speaking, the energies of the wavefunction under
these two potential are very close to each other, i.e.:

〈0|Vharmonic|0〉 ≈ 〈0|Vharmonic with cutoff |0〉. (12)

Consequently, when we adiabatically put in the cutoff, even though the
wavefunction maintains, the energy will remain almost the same which val-
idates our assumption. On the other hand, for a ionized state which can
propagate to infinity, the potential sits only inside the r < r0 region which
contributes comparably infinitesimal energy and can be ignored. As a result,
we can treat it as free plan wave of the ∼ eikr solution.

With the initial/final states, following the steps in Lecture Note 2 from
p.34, we can write down transition matrix element but with new initial
states:
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Using the dipole approximation ei
~k ·~r ≈ 1 and intergrating by parts with pf

chosen to point to z-axis, we can get:
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As a result, the Fermi’s golden rule gives:
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(15)
Last step is to sum over all possible final states:
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where p0 =
√
m
(
5~ω −mω2r2

0

)
which comes from the the delta func-

tion.
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