Monogamy of Quantum Entanglement

Fernando G.S.L. Brandão
ETH Zürich

Princeton EE Department, March 2013
Simulating quantum is hard

More than 25% of DoE supercomputer power is devoted to simulating quantum physics

Can we get a better handle on this simulation problem?
Simulating quantum is hard, secrets are hard to conceal

More than 25% of DoE supercomputer power is devoted to simulating quantum physics.

Can we get a better handle on this simulation problem?

All current cryptography is based on unproven hardness assumptions.

Can we have better security guarantees for our secrets?
Quantum Information Science...

... gives a path for solving both problems.

But it’s a long journey

QIS is at the **crossover** of computer science, engineering and physics
The Two Holy Grails of QIS

Quantum Computation:
Use of engineered quantum systems for performing computation
Exponential speed-ups over classical computing
E.g. Factoring (RSA)
Simulating quantum systems

Quantum Cryptography:
Use of engineered quantum systems for secret key distribution
Unconditional security based solely on the correctness of quantum mechanics
The Two Holy Grails of QIS

Quantum Computation:

State-of-the-art:
+5 qubits computer

Can prove (with high probability) that $15 = 3 \times 5$

Quantum Cryptography:

Use of engineered quantum systems for secret key distribution

Unconditional security based solely on the correctness of quantum mechanics
The Two Holy Grails of QIS

Quantum Computation:

State-of-the-art:
+-5 qubits computer

Can prove (with high probability) that $15 = 3 \times 5$

Quantum Cryptography:

State-of-the-art:
+-100 km

Still many technological challenges

Use of well controlled quantum systems for performing computations.

Exponential speed-ups over classical computing.

Unconditional security based solely on the correctness of quantum mechanics.
While waiting for a quantum computer

...how can a theorist help?

Answer 1: figuring out what to do with a quantum computer and the fastest way of building one

(quantum communication, quantum algorithms, quantum fault tolerance, quantum simulators, ...)

While waiting for a quantum computer

...how can a theorist help?

Answer 1: figuring out what to do with a quantum computer and the fastest way of building one

(quantum communication, quantum algorithms, quantum fault tolerance, quantum simulators, ...)

Answer 2: finding applications of QIS independent of building a quantum computer
While waiting for a quantum computer

...how can a theorist help?

Answer 1: figuring out what to do with a quantum computer and the fastest way of building one

(quantum communication, quantum algorithms, quantum fault tolerance, quantum simulators, ...)

Answer 2: finding applications of QIS independent of building a quantum computer

This talk
Quantum Mechanics I

probability theory based on L_2 norm instead of L_1

States: norm-one vector in \mathbb{C}^d:
$$\left| \psi \right> : = (\psi_1, \ldots, \psi_d)^T$$
$$\| \psi \|_2 = \sqrt{\langle \psi | \psi \rangle} = 1$$

Dynamics: L_2 norm preserving linear maps, unitary matrices: $UU^\dagger = I$

Observation: To any experiment with d outcomes we associate d PSD matrices $\{M_k\}$ such that $\sum_k M_k = I$

Born’s rule:
$$\Pr(k) = \langle \psi | M_k | \psi \rangle$$
Quantum Mechanics II

probability theory based on PSD matrices

Mixed States: PSD matrix of unit trace:

\[\rho \geq 0, tr(\rho) = 1 \quad \rho = \sum_i p_i |\psi_i\rangle\langle\psi_i| \]

Dirac notation reminder: \(\langle \psi | := (\psi_1^*, ..., \psi_d^*) \)

Dynamics: linear operations mapping density matrices to density matrices (unitaries + adding ancilla + ignoring subsystems)

Born’s rule: \(Pr(k) = tr(\rho M_k) \)
Quantum Entanglement

Pure States: \[|\psi\rangle_{AB} \in C^d \otimes C^l \]
If \[|\psi\rangle_{AB} = |\phi\rangle_A \otimes |\varphi\rangle_B \] , it’s separable
otherwise, it’s entangled.

Mixed States: \(\rho_{AB} \in D(C^d \otimes C^l) \)
If \(\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i| \otimes |\phi_i\rangle\langle\phi_i| \) , it’s separable
otherwise, it’s entangled.
A Physical Definition of Entanglement

LOCC: Local quantum Operations and Classical Communication

Separable states can be created by LOCC:

$$\rho = \sum p_i |\psi_i\rangle\langle\psi_i| \otimes |\phi_i\rangle\langle\phi_i|$$

Entangled states cannot be created by LOCC:
non-classical correlations
Quantum Features

Superposition principle

uncertainty principle

interference

non-locality

\[\Delta x \Delta p \geq \frac{\hbar}{2} \]
Monogamy of Entanglement
Monogamy of Entanglement

Maximally Entangled State: \(|\phi\rangle_{AB} = (|00\rangle + |11\rangle) / \sqrt{2} \)

Correlations of A and B in \(|\phi\rangle\langle\phi|_{AB} \) cannot be shared:

If \(\rho_{ABE} \) is s.t. \(\rho_{AB} = |\phi\rangle\langle\phi|_{AB} \), then \(\rho_{ABE} = |\phi\rangle\langle\phi|_{AB} \otimes \rho_E \)

Only knowing that the quantum correlations of A and B are very strong one can infer A and B are not correlated with anything else.

Purely quantum mechanical phenomenon!
Quantum Key Distribution...

... as an application of entanglement monogamy

- Using insecure channel Alice and Bob share entangled state ρ_{AB}
- Applying LOCC they distill $|\phi\rangle_{AB} = (|00\rangle + |11\rangle) / \sqrt{2}$

(Bennett, Brassard 84, Ekert 91)
Quantum Key Distribution...

... as an application of entanglement monogamy

Using insecure channel Alice and Bob share entangled state ρ_{AB}

- Applying LOCC they distill $|\phi\rangle_{AB} = (|00\rangle + |11\rangle) / \sqrt{2}$

Let π_{ABE} be the state of Alice, Bob and the Eavesdropper. Since $\pi_{AB} = |\phi\rangle\langle\phi|_{AB}$, $\pi_{AB} = |\phi\rangle\langle\phi|_{AB} \otimes \pi_E$. Measuring A and B in the computational basis give 1 bit of secret key.
Outline

Entanglement Monogamy

How general is the concept? Can we make it quantitative? Are there other applications/implications?

1. Detecting Entanglement and Sum-Of-Squares Hierarchy

2. Accuracy of Mean-Field Approximation

3. Other Applications
Problem 1: For M in $H(C^d)$ (d x d matrix) compute

$$\max_{\|x\|=1} x^T M x = \max_{\|x\|=1} \sum_{i,j} M_{ij}x_i x_j^*$$

Very Easy!
Quadratic vs Biquadratic Optimization

Problem 1: For M in $H(C^d)$ ($d \times d$ matrix) compute

$$\max_{\|x\|=1} x^T M x = \max_{\|x\|=1} \sum_{i,j} M_{ij} x_i x_j^*$$

Very Easy!

Problem 2: For M in $H(C^d \otimes C^l)$, compute

$$\max_{\|x\|=\|y\|=1} (x \otimes y)^T M (x \otimes y) = \max_{\|x\|=\|y\|=1} \sum_{ijkl} M_{ij;kl} x_i x_j^* y_k y_l^*$$

Next:

Best known algorithm using monogamy of entanglement
The Separability Problem

- Given $\rho_{AB} \in D(C^d \otimes C^l)$ is it entangled?

- (Weak Membership: $W_{\text{SEP}}(\epsilon, \| \| \| \| \|)$) Given ρ_{AB} determine if it is separable, or ϵ-away from SEP
The Separability Problem

• Given \(\rho_{AB} \in D(C^d \otimes C^l) \)
 is it entangled?

• (Weak Membership: \(W_{\text{SEP}}(\epsilon, ||*||) \)) Given \(\rho_{AB} \)
 determine if it is separable, or \(\epsilon \)-away from SEP

Frobenius norm
\[
\|X\|_2 = \text{tr}\left(X^T X \right)^{1/2}
\]
The Separability Problem

• Given $\rho_{AB} \in D(C^d \otimes C^l)$
is it entangled?

• (Weak Membership: $W_{SEP}(\epsilon, \|\cdot\|)$) Given ρ_{AB}
determine if it is separable, or ϵ-away from SEP

Frobenius norm

$$\|X\|_2 = tr\left((X^T X)^{1/2}\right)$$

LOCC norm

$$\|\rho - \sigma\|_{LOCC} = \max_{M \in LOCC} tr(M(\rho - \sigma))$$
The Separability Problem

• Given $\rho_{AB} \in D(C^d \otimes C^l)$ is it entangled?

• (Weak Membership: $W_{\text{SEP}}(\epsilon, \|*\|)$) Given ρ_{AB} determine if it is separable, or ϵ-away from SEP

• Dual Problem: Optimization over separable states

$$h_{\text{SEP}}(M) := \max_{\sigma \in \text{SEP}} tr(M \sigma) = \max_{\|x\|=\|y\|=1} (x \otimes y)^T M (x \otimes y)$$
The Separability Problem

• Given $\rho_{AB} \in D(C^d \otimes C^l)$
is it entangled?

• (Weak Membership: $W_{\text{SEP}}(\varepsilon, ||*||)$) Given ρ_{AB}
determine if it is separable, or ε-away from SEP

• Dual Problem: Optimization over separable states

$$h_{\text{SEP}}(M) := \max_{\sigma \in \text{SEP}} tr(M \sigma) = \max_{\|x\|=\|y\|=1} (x \otimes y)^T M (x \otimes y)$$

• Relevance: Entanglement is a resource in quantum cryptography, quantum communication, etc...
When is ρ_{AB} entangled?

- Decide if ρ_{AB} is separable or ε-away from separable

Beautiful theory behind it (PPT, entanglement witnesses, etc)

Horribly expensive algorithms

State-of-the-art: $2^{O(|A|\log|B|)}$ time complexity

Same for estimating h_{SEP} (no better than exhaustive search!)
Hardness Results

When is ρ_{AB} entangled?
- Decide if ρ_{AB} is separable or ε-away from separable

(Gurvits ’02, Gharibian ’08, ...)

NP-hard with $\varepsilon = 1/poly(|A||B|)$

(Harrow, Montanaro ’10)
No $\exp(O(\log^{1-v}|A|\log^{1-\mu}|B|))$ time algorithm with $\varepsilon = \Omega(1)$ and any $v+\mu > 0$ for unless ETH fails

ETH (Exponential Time Hypothesis): SAT cannot be solved in $2^{o(n)}$ time
(Impagliazzo&Paruti ’99)
Quasipolynomial-time Algorithm

(B., Christandl, Yard ’11) There is an algorithm with run time
\[\exp(O(\epsilon^{-2}\log|A|\log|B|)) \] for \(W_{\text{SEP}}(||*||, \epsilon) \)
There is an algorithm with run time \(\exp(O(\varepsilon^{-2}\log|A|\log|B|)) \) for \(W_{\text{SEP}}(||*||, \varepsilon) \)

Corollary: Solving \(W_{\text{SEP}}(||*||, \varepsilon) \) is not NP-hard for \(\varepsilon = \frac{1}{\text{polylog}(|A||B|)} \), unless ETH fails

Contrast with:

\[(\text{Gurvits ’02, Gharibian ’08}) \text{ Solving } W_{\text{SEP}}(||*||, \varepsilon) \text{ NP-hard for } \varepsilon = \frac{1}{\text{poly}(|A||B|)} \]
Quasipolynomial-time Algorithm

(B., Christandl, Yard ’11) For M in 1-LOCC, can compute $h_{\text{SEP}}(M)$ within additive error ε in time $\exp(O(\varepsilon^{-2}\log|A|\log|B|))$

M in 1-LOCC: $M = \sum_k A_k \otimes B_k$, $A_k, B_k \geq 0, B_k \leq I$, $\sum_k A_k \leq I$

Contrast with

(Harrow, Montanaro ’10) No $\exp(O(\log^{1-\nu}|A|\log^{1-\mu}|B|))$ algorithm for $h_{\text{SEP}}(M)$ with $\varepsilon=\Omega(1)$, for separable M

M in SEP: $M = \sum_k A_k \otimes B_k$, $A_k, B_k \geq 0, M \leq I$
Algorithm: SoS Hierarchy

\[h_{SEP}(M) = \max_{\|x\|=\|y\|=1} \sum_{ijkl} M_{ij;kl} x_i x_j y_k y_l \]

Polynomial optimization over hypersphere
Algorithm: SoS Hierarchy

\[h_{SEP}(M) = \max_{\|x\|=\|y\|=1} \sum_{ijkl} M_{ij;kl} x_i x_j y_k y_l^* \]

Polynomial optimization over hypersphere

Sum-Of-Squares (Parrilo/Lasserre) hierarchy:
gives sequence of SDPs that approximate \(h_{SEP}(M) \)
- Round \(k \) SDP has size \(\text{dim}(M)^{O(k)} \)
- Converge to \(h_{SEP}(M) \) when \(k \to \infty \)
Algorithm: SoS Hierarchy

$$h_{SEP}(M) = \max_{\|x\| = \|y\| = 1} \sum_{ijkl} M_{ij;kl} x_i x_j y_k y_l^*$$

Polynomial optimization over hypersphere

Sum-Of-Squares (Parrilo/Lasserre) hierarchy:
gives sequence of SDPs that approximate $h_{SEP}(M)$

- Round k SDP has size $\dim(M)^{O(k)}$
- Converge to $h_{SEP}(M)$ when $k \rightarrow \infty$

SoS is the strongest SDP hierarchy known for polynomial optimization (connections with SoS proof system, real algebraic geometric, Hilbert’s 17th problem, ...)

We’ll derive SoS hierarchy exploring ent. monogamy
Classical Correlations are Shareable

Given separable state $\sigma_{AB} = \sum_j p_j |\psi_j\rangle\langle\psi_j| \otimes |\varphi_j\rangle\langle\varphi_j|$

Consider the symmetric extension

$\sigma_{AB_1,\ldots,B_k} = \sum_j p_j |\psi_j\rangle\langle\psi_j| \otimes |\varphi_j\rangle\langle\varphi_j| \otimes_k$

Def. ρ_{AB} is k-extendible if there is $\rho_{AB_1\ldots B_k}$ s.t. for all j in $[k]$, $\text{tr}_{B_j}(\rho_{AB_1\ldots B_k}) = \rho_{AB}$
Monogamy Defines Entanglement

(Stormer ’69, Hudson & Moody ’76, Raggio & Werner ’89)

\(\rho_{AB} \) separable iff \(\rho_{AB} \) is \(k \)-extendible for all \(k \)

search for a 2-extension, 3-extension......

How close to separable is \(\rho_{AB} \) if a \(k \)-extension is found?

How long does it take to check if a \(k \)-extension exists?
SoS as optimization over k-extensions

(Doherty, Parrilo, Spedalieri ‘01) k-level SoS SDP for $h_{\text{SEP}}(M)$ is equivalent to optimization over k-extendible states (plus PPT (positive partial transpose) test):

$$\max tr(M\pi) : \exists \sigma_{AB_1...B_k} \geq 0, \; tr(\sigma) = 1, \; \sigma_{AB_j} = \pi \; \forall j$$
How close to separable are \(k \)-extendible states?

\[(\text{Koenig, Renner ‘04}) \text{ De Finetti Bound}\]

If \(\rho_{AB} \) is \(k \)-extendible

\[
\min_{\sigma \in \text{SEP}} \| \rho_{AB} - \sigma_{AB} \| \leq \Omega \left(\sqrt{\frac{|B|^2}{k}} \right)
\]
How close to separable are k-extendible states?

(Koenig, Renner ‘04) De Finetti Bound

If ρ_{AB} is k-extendible:

$$\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\| \leq \Omega \left(\sqrt{\frac{|B|^2}{k}} \right)$$

Improved de Finetti Bound (B., Christandl, Yard ’11)

If ρ_{AB} is k-extendible:

$$\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\| \leq \left(\frac{4 \ln 2 \log |A|}{k} \right)^{1/2}$$
How close to separable are k-extendible states?

Improved de Finetti Bound

If ρ_{AB} is k-extendible:

$$\min_{\sigma \in \text{SEP}} \left\| \rho_{AB} - \sigma_{AB} \right\| \leq \left(\frac{4 \ln 2 \log |A|}{k} \right)^{1/2}$$

$k=2\ln(2)\varepsilon^{-2}\log|A|$ rounds of SoS solves $W_{\text{SEP}}(\varepsilon)$ with a SDP of size $|A| |B|^k = \exp(O(\varepsilon^{-2}\log|A| \log|B|))$
Proving...

Improved de Finetti Bound

If ρ_{AB} is k-extendible:

$$\min_{\sigma \in SEP} \| \rho_{AB} - \sigma_{AB} \| \leq \left(\frac{4 \ln 2 \log |A|}{k} \right)^{1/2}$$

Proof is information-theoretic

Mutual Information:

$$I(A:B)_\rho := H(A) + H(B) - H(AB)$$

$$H(A)_\rho := -\text{tr}(\rho \log(\rho))$$
Proving...

Improved de Finetti Bound

If ρ_{AB} is k-extendible:

$$\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\| \leq \left(\frac{4 \ln 2 \log |A|}{k} \right)^{1/2}$$

Proof is information-theoretic

Mutual Information:

$$I(A:B)_{\rho} := H(A) + H(B) - H(AB) \quad \quad \quad H(A)_{\rho} := -\text{tr}(\rho \log(\rho))$$

Let $\rho_{AB_1...B_k}$ be k-extension of ρ_{AB}

$$\log|A| > I(A:B_1...B_k) = I(A:B_1) + I(A:B_2|B_1) + ... + I(A:B_k|B_1...B_{k-1})$$

(chain rule)

For some $l<k$: $I(A:B_l|B_1...B_{l-1}) < \log|A|/k$
Proving...

Improved de Finetti Bound

If ρ_{AB} is k-extendible:

$$\min_{\sigma \in SEP} \left\| \rho_{AB} - \sigma_{AB} \right\| \leq \left(\frac{4 \ln 2 \log |A|}{k} \right)^{1/2}$$

Proof is information-theoretic

Mutual Information:

$$I(A:B)_{\rho} := H(A) + H(B) - H(AB) \quad \quad H(A)_{\rho} := -\text{tr}(\rho \log(\rho))$$

Let $\rho_{AB1...Bk}$ be k-extension of ρ_{AB}

$$\log |A| > I(A:B_1...B_k) = I(A:B_1) + I(A:B_2 | B_1) + ... + I(A:B_k | B_1...B_{k-1})$$

(chain rule)

For some $l<k$:

$$I(A:B_l | B_1...B_{l-1}) < \log |A| / k$$

What does it imply?
Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.
Quantum Information?

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

Good news
- $I(A:B|C)$ still defined
- Chain rule, etc. still hold
- $I(A:B|C)_\rho = 0$ implies ρ is separable
 (Hayden, Jozsa, Petz, Winter’03)

Bad news
- Only definition $I(A:B|C) = H(AC) + H(BC) - H(ABC) - H(C)$
- Can’t condition on quantum information.
- $I(A:B|C)_\rho \approx 0$ doesn’t imply ρ is approximately separable in 1-norm (Ibinson, Linden, Winter ‘08)
Proving the Bound

Thm (B., Christandl, Yard ’11)

\[
I(A : B | C) \geq \frac{1}{2 \ln 2} \min_{\sigma \in SEP} \| \rho_{AB} - \sigma_{AB} \|^2
\]

Obs: \(I(A:B | E) \geq 0\) is strong subadditivity inequality (Lieb, Ruskai ‘73)

Chain rule:

\[2 \log |A| > I(A:B_1...B_k) = I(A:B_1) + I(A:B_2 | B_1) + ... + I(A:B_k | B_1...B_{k-1})\]

For \(\rho_{AB}\) \(k\)-extendible:

\[2 \log |A| \geq \frac{k}{2 \ln 2} \min_{\sigma \in SEP} \| \rho_{AB} - \sigma_{AB} \|^2\]
Conditional Mutual Information Bound

\[
I(A : B \mid C) \geq \frac{1}{2 \ln 2} \min_{\sigma \in SEP} \| \rho_{AB} - \sigma_{AB} \|^2
\]

- **Coding Theory**
 Strong subadditivity of von Neumann entropy as state redistribution rate
 (Devetak, Yard ‘06)

- **Large Deviation Theory**
 Hypothesis testing for entanglement
 (B., Plenio ‘08)

\[
(I(A : B \mid C)_{\rho} \geq E_{R}^{\infty}(\rho_{A:BE}) - E_{R}^{\infty}(\rho_{A:E}) \geq D_{1-LOCC}(\rho_{A:B}) \geq \frac{1}{2 \ln 2} \min_{\sigma \in SEP} \| \rho_{A:B} - \sigma \|_{1-LOCC}^2)
\]
h_{SEP} equivalent to

1. Injective norm of 3-index tensors

2. Minimum output entropy quantum channel, Optimal acceptance probability in QMA(2),

4. 2->q norms of projectors: \(\| P \|_{2\rightarrow q} := \max_{\| x \|_2 = 1} \| Px \|_q \)

\[\| P \|_{2\rightarrow 4} = h_{SEP}(M), \quad M = \sum_k (P|k\rangle\langle k|P) \otimes (P|k\rangle\langle k|P) \]

(\(\| \cdot \|_{2\rightarrow q} \) for q > 2 are hypercontractive norms: useful in Markov Chain Monte Carlo (rapidly mixing condition), etc)
Quantum Bound on SoS Implies

(Barak, B., Harrow, Kelner, Steurer, Zhou ‘12)

1. For $n \times n$ matrix A can compute with $O(\log(n)\varepsilon^{-3})$ rounds of SoS a number x s.t.

$$\|A\|_{2\to 4}^4 \leq x \leq \|A\|_{2\to 4}^4 + \varepsilon \|A\|_{2\to 2}^2 \|A\|_{2\to \infty}^2$$
Quantum Bound on SoS Implies

(Barak, B., Harrow, Kelner, Steurer, Zhou ‘12)

1. For $n \times n$ matrix A can compute with $O(\log(n)\epsilon^{-3})$ rounds of SoS a number x s.t.

$$\|A\|_2^4 \leq x \leq \|A\|_2^4 + \epsilon \|A\|_2^2 \|A\|_\infty^2$$

2. $n^{O(\epsilon)}$-level SoS solves ϵ-Small Set Expansion Problem (closely related to unique games).

Alternative algorithm to (Arora, Barak, Steurer ’10)
Quantum Bound on SoS Implies

(Barak, B., Harrow, Kelner, Steurer, Zhou ‘12)

1. For \(n \times n \) matrix \(A \) can compute with \(O(\log(n)\varepsilon^{-3}) \) rounds of SoS a number \(x \) s.t.

\[
\left\| A \right\|_{2\rightarrow 4}^4 \leq x \leq \left\| A \right\|_{2\rightarrow 4}^4 + \varepsilon \left\| A \right\|_{2\rightarrow 2}^2 \left\| A \right\|_{2\rightarrow \infty}^2
\]

2. \(n^{O(\varepsilon)} \)-level SoS solves \(\varepsilon \)-Small Set Expansion Problem (closely related to unique games).
Alternative algorithm to (Arora, Barak, Steurer ’10)

3. Open Problem:
Improvement in bound (additive -> multiplicative error) would solve SSE in \(\exp(O(\log^2(n))) \) time.

Can formulate it as a quantum information-theoretic problem
Outline

Entanglement Monogamy

How general is the concept?
Can we make it quantitative?
Are there other applications/implications?

1. Detecting Entanglement and Sum-Of-Squares Hierarchy

2. Accuracy of Mean Field Approximation

3. Other applications
Constraint Satisfaction Problems vs Local Hamiltonians

k-arity CSP:

Variables $\{x_1, ..., x_n\}$, alphabet Σ

Constraints: $c_j : \Sigma^k \rightarrow \{0,1\}$

Assignment: $\sigma : [n] \rightarrow \Sigma$

$\text{Unsat} := \min_{\sigma} \sum c_j(\sigma(x_{j_1}), ..., \sigma(x_{j_k}))$
Constraint Satisfaction Problems vs Local Hamiltonians

k-arity CSP:

Variables $\{x_1, \ldots, x_n\}$, alphabet Σ

Constraints: $c_j : \Sigma^k \rightarrow \{0,1\}$

Assignment: $\sigma : [n] \rightarrow \Sigma$

Unsat $:= \min_{\sigma} \sum_j c_j(\sigma(x_{j_1}), \ldots, \sigma(x_{j_k}))$

k-local Hamiltonian H:

n qudits in $(C^d)^{\otimes n}$

Constraints: $H_j \in Her\left((C^d)^{\otimes k}\right)$

qUnsat $:= E_0\left(\sum_j H_j\right)$

$E_0 : \min$ eigenvalue
C. vs Q. Optimal Assignments

Finding optimal assignment of CSPs can be hard.
C. vs Q. Optimal Assignments

Finding optimal assignment of CSPs can be hard

Finding optimal assignment of quantum CSPs can be even harder (BCS, Laughlin states for FQHE,...)

Main difference: Optimal Assignment can be a highly entangled state (unit vector in $(C^d)^\otimes n$)
Optimal Assignments: Entangled States

Non-entangled state: \(\left(a_1 \left| 0 \right> + b_1 \left| 1 \right> \right) \otimes ... \otimes \left(a_n \left| 0 \right> + b_n \left| 1 \right> \right) \)

e.g. \(\left| \uparrow \right> \otimes ... \otimes \left| \uparrow \right> \)

Entangled states: \(\sum_{i_1, ..., i_n} c_{i_1, ..., i_n} \left| i_1, ..., i_n \right> \)

e.g. \(\left(\left| \uparrow \right> \left| \downarrow \right> - \left| \downarrow \right> \left| \uparrow \right> \right) / \sqrt{2} \)

To describe a general entangled state of \(n \) spins requires \(\exp(O(n)) \) bits
How Entangled?

Given bipartite entangled state \(|\psi\rangle_{AB} \in \mathbb{C}^n \otimes \mathbb{C}^m \)

the reduced state on A is mixed: \(\rho_A \geq 0, \quad tr(\rho_A) = 1 \)

The more mixed \(\rho_A \), the more entangled \(\psi_{AB} \):

Quantitatively: \(E(\psi_{AB}) := S(\rho_A) = -tr(\rho_A \log \rho_A) \)

Is there a relation between the amount of entanglement in the ground-state and the computational complexity of the model?
Mean-Field...

...consists in approximating groundstate by a product state $|\psi_1\rangle \otimes \ldots \otimes |\psi_n\rangle$

$$\max_{\psi_1,\ldots,\psi_n} \langle \psi_1,\ldots,\psi_n | H | \psi_1,\ldots,\psi_n \rangle \text{ is a CSP}$$

Successful heuristic in Quantum Chemistry (e.g. Hartree-Fock) Condensed matter (e.g. BCS theory)

Folklore:

Mean-Field good when Many-particle interactions
Low entanglement in state
(B., Harrow ‘12) Let H be a 2-local Hamiltonian on qudits with interaction graph $G(V, E)$ and $|E|$ local terms.
(B., Harrow ‘12) Let H be a 2-local Hamiltonian on qudits with interaction graph $G(V, E)$ and $|E|$ local terms.

Let $\{X_i\}$ be a partition of the sites with each X_i having m sites.
Mean-Field Good When

(B., Harrow ‘12) Let H be a 2-local Hamiltonian on qudits with interaction graph $G(V, E)$ and $|E|$ local terms.

Let $\{X_i\}$ be a partition of the sites with each X_i having m sites. Then there are products states ψ_i in X_i s.t.

$$\frac{1}{|E|} \langle \psi_1,...,\psi_m | H | \psi_1,...,\psi_m \rangle \leq e_0(H) + \Omega \left(d^6 \frac{1}{\text{deg}(G)} E_i \frac{S(X_i)}{m} \right)^{1/8}$$

$\text{deg}(G)$: degree of G

E_i : expectation over X_i

$S(X_i)$: entropy of groundstate in X_i

$m < O(\log(n))$
Approximation in terms of degree

...shows mean field becomes exact in high dim
Approximation in terms of degree

\[
\frac{1}{|E|} \left\langle \psi_1, \ldots, \psi_m \right| H \left| \psi_1, \ldots, \psi_m \right\rangle \leq e_0(H) + \Omega \left(d^6 \frac{1}{\deg(G)} E_i \frac{S(X_i)}{m} \right)^{1/8}
\]

Relevant to the quantum PCP problem:

(Aharonov, Arad, Landau, Vazirani ’08; Freedman, Hastings ‘12; Bravyi, DiVincenzo, Loss, Terhal ‘08, Aaronson ‘08)

Is approximating \(e_0(H)\) to constant accuracy quantum NP-hard?

It shows that quantum generalizations of PCP theorem and parallel repetition cannot both be true (assuming “quantum NP”= QMA ≠ NP)
Approximation in terms of average entanglement

$$\frac{1}{|E|} \langle \psi_1, \ldots, \psi_m | H | \psi_1, \ldots, \psi_m \rangle \leq e_0(H) + \Omega \left(d^6 \frac{1}{\text{deg}(G)} E_i \frac{S(X_i)}{m} \right)^{1/8}$$

Mean-field works well if entanglement of groundstate satisfies a subvolume law:

$$E_i \frac{S(X_i)}{m} = o(1)$$

$$m < O(\log(n))$$

Connection of amount of entanglement in groundstate and computational complexity of the model
Approximation in terms of average entanglement

\[
\frac{1}{|E|} \langle \psi_1, \ldots, \psi_m | H | \psi_1, \ldots, \psi_m \rangle \leq e_0 (H) + \Omega \left(d^6 \frac{1}{\text{deg}(G)} \sum_i E_i \frac{S(X_i)}{m} \right)^{1/8}
\]

Systems with low entanglement are expected to be simpler.

So far only precise in 1D:

Area law for entanglement -> Succinct classical description (MPS)

Here:

Good: arbitrary lattice, only subvolume law

Bad: Only mean energy approximated well
New Algorithms for Quantum Hamiltonians

Following same approach we also obtain polynomial time algorithms for approximating the groundstate energy of

1. Planar Hamiltonians, improving on (Bansal, Bravyi, Terhal ‘07)
2. Dense Hamiltonians, improving on (Gharibian, Kempe ‘10)
3. Hamiltonians on graphs with low threshold rank, building on (Barak, Raghavendra, Steurer ‘10)

In all cases we prove that a product state does a good job and use efficient algorithms for CSPs.
Proof Idea: Monogamy of Entanglement

Cannot be highly entangled with too many neighbors

Entropy $S(X_i)$ quantifies how entangled it can be

Proof uses information-theoretic techniques (chain rule of conditional mutual information, informationally complete measurements, etc) to make this intuition precise

Inspired by classical information-theoretic ideas for bounding convergence of SoS hierarchy for CSPs (Tan, Raghavendra ’10; Barak, Raghavendra, Steurer ‘10)
Outline

Entanglement Monogamy

How general is the concept? Can we make it quantitative? Are there other applications/implications?

1. Detecting Entanglement and Sum-Of-Squares Hierarchy

2. Accuracy of Mean Field Approximation

3. Other applications
Other Applications

(B., Horodecki ‘12)
Proving entanglement area law from exponential decay of correlations for 1D states

(Almheiri, Marolf, Polchinski, Sully ’12)
Black hole firewall controversy

(Vidick, Vazirani ’12; Bartett, Colbeck, Kent ’12; ...)
Device independent key distribution

(Vidick and Ito ‘12)
Entangled multiple proof systems: NEXP in MIP*
Conclusions

Entanglement Monogamy is a distinguishing feature of quantum correlations

(quantum engineering)
It’s at the heart of quantum cryptography

(convex optimization)
Can be used to detect entanglement efficiently and understand Sum-Of-Squares hierarchy better

(computational physics)
Can be used to bound efficiency of mean-field approximation

(quantum many-body physics)
Can be used to prove area law from exponential decay of correlations
Thank you!