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1 CSS Codes [10 Points]

In class, we saw how to construct that [7, 4, 3] Hamming code and its [7, 3, 4] dual code. From
this pair of classical linear codes, we constructed a [[7, 1, 3]] Calderbank-Shor-Steane (CSS)
quantum code.

(a) Using a similar method as in the construction of the [7,4,3] code, construct a [15, 11, 3]
classical linear code, and find its dual code. From this pair of classical codes, show that a
[[15, 7, 3]] CSS quantum code can be constructed. (HINT: In class, it was important that all
columns of the parity check matrix of the [7,4,3] code were distinct.)

(b) Generalizing this construction further, construct a [[n, k, 3]] CSS code, where n = 2m − 1,
k = n− 2m, and m ≥ 3 is an integer.

2 More CSS Codes [10 points]

In class, we saw that for some stabilizer group S, we can construct the normalizer N (S), and
because S is normal in N (S) we can construct the quotient group N (S)/S which represents
equivalence classes of transformations which map the codespace to itself.

To make it easier to work with, we can further simplify our normalizer by quotienting by −I to
get rid of any meaningless signs. We denote this reduced normalizer as N̂ (S) = N (S)/{−I}.
This simply identifies any Pauli N ∈ N (S) with its negative −N . This way, we can see that the
reduced logical group N̂ (S)/S can simply be generated by a logical X operator and a logical
Z operator on any qubit: N̂ (S)/S = 〈Xi, Zi〉ki=1. This is the most compact description we can
give for the set of logical transformations of the encoded qubits in the codespace.

(a) Find a pair
(
X,Z

)
of generators for N̂ (S)/S for the 9-qubit Shor code.

(b) Consider the binary matrix

δ =


1 1 1 0 0
0 0 1 1 1
1 1 0 1 1
1 1 1 0 0
0 0 1 1 1

 . (1)

Let us associate to each row j an X-type stabilizer

Mj =

5∏
l=1

X
δj,l
l (2)
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and to each column a Z-type stabilizer

Nj =

5∏
l=1

Z
δj,l
l . (3)

Use that δ2 = 0 mod 2 to argue that {Mj , Nj}j defines a stabilizer code Q.

For the rest of this problem, it will be useful to have read sections 7.9.3 and 7.9.4 of Preskill’s
notes if you attempt this before that section is covered in class (with particular attention paid
to 7.9.4d).

(c) Find parity-check matrices H1 and H2 such that Q is CSS(H1, H2). Find associated gener-
ator matrices G1 and G2. Use this to find a set of generators for N̂ (S)/S (grouped into pairs
{
(
Xi, Zi

)
}).

(d) What is the distance of this code?

(e) Give an algorithm which, starting from the parity check matrices H1 and H2 of a gen-
eral CSS code, computes a set of generators for N̂ (S)/S (grouped into pairs {

(
Xi, Zi

)
}). Show,

in particular, that we can always choose each Xi as an X-type operator (made up of only X or
I on physical qubits), and each Zi as a Z-type operator (made up of only Z or I on physical
qubits).

3 Permutation-Invariant Codes [10 Points]

Recall that the group Sn of permutations acts unitarily on the space of n-qubits by permuting
them. That is, for π ∈ Sn we can define the unitary Uπ by

Uπ (|φ1〉 ⊗ ...⊗ |φn〉) = |φπ−1(1)〉 ⊗ ...⊗ |φπ−1(n)〉 (4)

for all product states |φ1〉 ⊗ ... ⊗ |φn〉 (and linearly extended to all of (C2)⊗n). Let (ij) ∈ Sn
denote the transposition of i 6= j and define the subspace

Q = {|Ψ〉 ∈ ((C2)⊗n)|U(ij) |Ψ〉 = |Ψ〉 , ∀i 6= j}. (5)

(a) Give a basis of Q. What is the projector P onto Q? Express it as a linear combina-
tion of the operators Uπ, π ∈ Sn.

(b) Show that the set of errors

E =

{∑
π∈Sn

aπUπ|(aπ) ∈ C

}
(6)

is correctable. Is the code degenerate? Find an operator basis {Fj}j of E which diagonalizes
the matrix Cab.
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(c) Show that a single bit flip, e.g. E = X1, is undetectable.

(d) Show that E = X⊗n is an undetectable error. More generally, argue that for any U ∈
SU(2n), U 6= I, the error E = U⊗n satisfies

• (i) EQ = Q (Hint: use the fact that [U⊗n, Uπ] = 0 for all U ∈ SU(2) and π ∈ Sn according
to a result called Schur-Weyl duality).

• (ii) E is an undetectable error.

4 Generating the Clifford Group [10 Points]

Recall that in class, we gave the following definition of the Pauli group on n qubits:

Gn = {I,X, Y, Z} × {±1}, (7)

where, Y = ZX was chosen to be real and anti-hermitian so that we didn’t have to worry about
complex phases.

The ‘full’ definition of the n-qubit Pauli group is defined as

Pn = {I,X, Y, Z}⊗n × {±1,±i} (8)

where, here, Y = iXZ is its ‘usual’ complex hermitian operator self. So, each element of Pn is
(with an overall phase ±1,±i) a tensor product of Pauli matrices and identity matrices acting
on the n qubits. The n-qubit Clifford group Cn is the normalizer of the Pauli group – a unitary
operator U acting on n qubits is contained in Cn if and only if

UMU † ∈ Pn, ∀ M ∈ Pn (9)

That is, U acting by conjugation takes a tensor product of Pauli matrices to a tensor product
of Pauli matrices. Actually, an element of the Clifford group is defined as this action by conju-
gation, so that the overall phase of U is not relevant.

In this exercise, you will show that the Clifford group can be generated by three quantum
gates: the single-qubit gates H and S, and the two-qubit gate CNOT = Λ (X). Here H denotes
the Hadamard gate

H =
1√
2

[
1 1
1 −1

]
(10)

(a rotation by π about the axis x̂+ ẑ), and S denotes the phase gate

S =

[
1 0
0 i

]
(11)

(a rotation by π/2 about the ẑ axis).

It follows that quantum circuits constructed from these gates can be efficiently simulated by
a classical computer, because the action of Cn on Pn can be succinctly described and easily
updated after each gate.
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(a) Compute how H, S, and Λ (X) act on Pauli operators by conjugation, and verify that
H and S are in C1 and that Λ (X) is in C2.

(b) Show that H and S generate C1. (Hint: Note that the elements of the one-qubit Clif-
ford group are the permutations of X, Y , Z, with minus signs appropriately chosen so that the
product XY Z = iI remains invariant).

(c) Let Λ (X) denote the two-qubit gate that applies σ to the target qubit if the control qubit
is |1〉, and acts trivially if the control qubit is |0〉. Let σj denote σ acting on qubit j. Show that
Λ (Z) and Λ (Y ) can be constructed from Λ (X), H and S. Show that

Λ (σ)Z1Λ (σ) = Z1, Λ (σ)X1Λ (σ) = X1σ2, (12)

where qubit 1 is the control of the Λ (σ) and qubit 2 is its target. Here Λ (σ) is one of X, Y , Z,
so that in particular σ2 = I.

We will prove that H, S, and Λ (X) generate Cn by induction. We have already shown (b).
Now assume, as an inductive hypothesis, that H, S, and Λ (X) generate Cn. We need to show
that they generate Cn+1.

(d) Suppose that U is an element of Cn+1. Show that there is a W generated by H, S, and
Λ (X) such that the action of WU by conjugation is

WU : X1 → X1M (13)

Z1 → Z1N, (14)

where each of M , N is a tensor product of Pauli matrices acting on qubits 2 through n+ 1.

(e) Now consider

V ≡ Λ (M)H1Λ (N)H1WU, (15)

where Λ (M) denotes the transformation controlled by the first qubit that applied M to the
other n qubits, and similarly for Λ (N). Note that Λ (M) and Λ (N) can be constructed from
H, S, and Λ (X). It follows from (c) that the action of Λ (M) by conjguation is

Λ (M) : X1 → X1M (16)

Z1 → Z1. (17)

Show that the action of V by conjugation is

V : X1 → X1 (18)

Z1 → Z1. (19)

(f) Show that V is in Cn, and therefore can be constructed from H, S, and Λ (X). Show
that U can also be constructed from H, S, and Λ (X). This completes the inductive step, and
the proof.

—————————————————————————————————————–
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