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Quantum channel

U

A quantum channel !  : CP trace preserving map
                                 from S! C|S| to R! C|R| 

Stinespring form:                               for an
                        isometry U! " U : S " RE

S R

E

! (! ) = tr E (U! U! )



The additivity conjecture!

! 199? - 2008

Smin (! ) := min
!

S(! (! )) S(! ) = ! tr (! log ! )

Smin (! 1 ! ! 2) = Smin (! 1) + Smin (! 2)

If true, it would imply nice formulas for many quantities of interest in
quantum information theory:, e.g. classical capacity, entanglement cost,
distillable common randomness, distillable local purity



Counterexample to additivity

(Hastings 08): The additivity conjecture is wrong.  A random choice of the
channel gives a violation w.h.p. (for suitable choices of input, output and
environment dimensions)

This talk: present HastingsÕ counterexample using
tools from concentration of measure

M.B. Hastings, arXiv:0809.3972

Fukuda, King, Moser, arXiv:0905.3697, 0907.544

Aubrun, Szarek, Werner arXiv:1003.4925

Collins, Nechita arXiv:1006.3247



Proof Strategy
As the two channels for the counterexample, we consider a

channel     and its conjugate    , defined as                              
         

We prove a lower bound on                          , valid for
every channel 

We prove an upper bound on                  , valid w.h.p. for a
random choice of the channel 

Observe the lower bound is smaller than twice the upper
bound...

¥

¥

¥

¥

! (! ) = tr E
!
U! ! UT "

!!

Smin (! ! ! )
!

Smin (! )
!



Lower bound
The idea of the lower bound (from Hayden-Winter, first applied to the

p-Renyi entropies case (p>1)) is to use as an input the maximally
entangled state of the two input states.

U*
SÕ RÕ

EÕ

US R

E

!

One can show:

! ! " ! (" SS ! )! ! #
|S|

|R||E |
which implies:

S(! ! ! (" SS ! )) " 2 log(|R|) #
|S|
|E |

log |R|
|R|

1.  A. Winter, arXiv:0707.0402

2.  P. Hayden, arXiv:0707.3291
3.  P. Hayden and A. Winter,
arXiv:0807.4753



The lower bound

Rest of the talk



Entangled Subspaces
Given the channel                               we can          
        associate to it a subspace of R! S:  

S! := { U|! ! , |! ! " CdS }

Lemma: Smin(Λ) = min
|ψ〉∈SΛ

S(ψR)

Smin(Λ) = min
ρ

S(Λ(ρ)) = min
|ψ〉〈ψ|

S(Λ(|ψ〉〈ψ|)) = min
|ψ〉∈SΛ

S(ψR)

Proof:

Λ(ρ) = trE(UρU∗)



Entangled Subspaces
Therefore we would like to find a subspace     of      
      
         of dimension      for which all states are highly
entangled:

R⊗ E |S|
S

min
|! !" S

S(! R ) > log(|R|) !
1
2

|S|
|E |

log |R|
|R|

We will see that by choosing      from the Haar measure, i.e. the subspace 

associated to                             for a Haar unitary U, the Eq. above is     

satisfied w.h.p. for |S|=|E| >>|R|  

PS := U

!

"
|S|#

k=1

|i !" i |

$

% U!

S



Concentration of Measure on the sphere

!
An Take any set M in the sphere of measure greater than

 ! . Consider M" as the set of all points epsilon-close

to M (e.g. in the euclidean distance). Then for a
random choice of x in Sn  

                  P r (x /! M ! ) " e! c! 2 n



Concentration of Measure on the sphere

!
An LevyÕs Lemma: Given any ! -Lipschitz* function f: Sn  "   R,

with average value M, for a random choice of x in Sn

                                              P r (|f (x) ! M | " ! ) # e! c! 2 n/ " 2

* ! -Lipschitz:|f (x) ! f (y)| " ! #x ! y#

A pure state                    can be identified with a point in S2d - 1. Therefore any
well-behaved function of         will be extremely concentrated around its

average in high dimensions!

|! ! " Cd

|! !



Entangled subspaces from LevyÕs lemma

(Hayden, Leung and Winter 04) Applying LevyÕs Lemma to the von
Neumann entropy we find that for  

P r |! !

!
S(! R ) ! log(|R|) "

|R|
ln 2|E |

" "
"

! e
" c | R || E | ! 2

(log | R | ) 2

|! ! " R # E

We can then combine this large deviation bound with the idea of
epsilon-nets to get highly entangled subspaces of large dimension.



Epsilon-Net
An epsilon-net in A is a set of points N such that for every point x in A

there is a xÕin N with || x - xÕ ||  !  "

For the set of pure states in Cd there is an epsilon-net N 
of cardinality |N| !  (5/" )2d



Highly Entangled Subspaces
Combining the large deviation bound from before and the union bound:

SU = U

!

"
|S|#

k=1

|i !" i |

$

% U ! = "/
!

8 log|R|with                            and                          .  Then from |N| !  (5/" )2|S|

P r
!

max
|! !" SU

S(! R ) ! log |R| "
|R|

ln 2|E |
" "/ 2

"
! |N " |e

# c | R || E |
(log | R | ) 2 #2

S(! R ) ! log |R| "
|R|

ln |E |
" "

W.h.p.  a random subspace S of dimension                                       only
contains states such that

|S| = c! |R||S|! 5/ 2

(log |R|)5/ 2



Not Entangled Enough
Alas, for the counterexample we need a subspace S of dimension

|S| >
|E||R|ε

log |R|

The construction only gives:                                     .....|S| > c
′
|E||R|ε2.5

log |R|2.5

For Renyi entropies this construction does work and itÕs the idea of
Hayden-Winter counterexample.

1.  A. Winter, arXiv:0707.0402
2.  P. Hayden, arXiv:0707.3291

3.  P. Hayden and A. Winter,
arXiv:0807.4753



An useful idea
This technique (large deviation + epsilon-net) has been successfully

applied to many other problems in QIT.

Hasting’s construction of the counterexample gives two (maybe three)
interesting new ideas on how to sometimes improve the technique.

1. one-time pad, data hiding, locking (Hayden, Leung, Shor, Winter 03; Aubrun 08)
2. remote state preparation (Bennett, Hayden, Leung, Shor, Winter 03)
3. superdense coding (Harrow, Hayden, Leung 03; Abeysinghe, Hayden, Smith, Winter 04)
4. encryption with reference frames  (Bartlett, Hayden, Spekkens 05)
5. foundations of statistical mechanics (Popescu, Short, Winter 05)
6. quantum identification (Hayden,  Winter 10)
7. no measurement-based QC for generic states (Gross, Flammia, Eisert 08; 
                                                                        Bremner, Mora, Winter 08)
8. Counterexamples minimum output additivity of Renyi entropies (Hayden, Winter 08), etc...



Plan of attack
We can follow the general idea (LevyÕs+epsilon-nets) by adding three

new ingredients:

1. Bound the von Neumann entropy indirectly, using the 2-norm

2. Improve the large deviation bound, using LevyÕs lemma in a
more refined way

3. Improve the epsilon-net estimate (either by a different
probabilistic argument or by using a better version thereof)



1. Bounding the entropy with 2-norm

Lemma: For a subspace S of R⊗S we have (with τ=id/|R|)

min
|ψ〉∈S

S(ψR) ≥ log |R|− |R| max
|ψ〉∈S

‖ψR − τ‖22

Proof:

S(ρ) ≥ − log(|R|tr(ρ2)) + log |R| ≥ 1− |R|tr(ρ2) + log |R|

log x ≤ x− 1, x ≥ 1



1. Bounding the entropy with 2-norm

Lemma: For a subspace S of R! S we have (with ! =id/|R|)

min
|! !" S

S(! R ) ! log |R| " |R| max
|! !" S

#! R " " #2
2

Next we prove there is a S of R! S with |S| = |E| >> |R| s.t.    

max
|! !" S

! ! R " " ! 2
2 #

c
|R|2

Then min
|ψ〉∈S

S(ψR) ≥ log |R|−
c

|R|

min
|ψ〉∈S

S(ψR) > log(|R|)−
1

2

|S|

|E|

log |R|

|R|
Remember,
we needed:( )



2. Large Deviation Bound for 2-norm

A naive application of LevyÕs lemma gives

since the function is 2-Lipschitz and its average is smaller than 1/|E|
(we assume itÕs zero, for simplicity)

P r
!
! ! R " " ! 2

2 # #
"

$ 2! c|R || E |! 2

From it and epsilon-nets we can only find a S s.t.: max
|! > ! S

! ! R " " ! 2
2 #

!
log |R|

|R|

However, the Lipschitz constant estimate was too conservative. For the vast
majority of states, itÕs much smaller.... WeÕll explore this.



Improved Lipschitz constant
For the entire state space, a constant Lipschitz constant is the best we
can have (take e.g. the maximally entangled state and the |0, 0> state). But

       If two states       and       are such that

Then

! ! R ! ! , ! " R ! ! "
a

|R||! ! |! !

|f (|! 〉) − f (|" 〉)| ≤

√

4a
|B |

|‖|! 〉 − |" 〉‖2

for f(|ψ〉) := ‖ψR − τ‖2

And with probability                    ,                
                     

1− e
−c|E| ‖ψR‖2 ≤

a

|R|



Levy’s for the intersection of two events

From the concentration of measure in the sphere, in complete
analogy with standard Levy’s lemma, we have

Moreover, we have the following large deviation bound for infinity norm
(which can be derived from Levy’s Lemma)

Pr

(

‖ψR‖∞ ≥
C

|R|

)

≤ e−C
′|E|

Pr

(

‖ψR − τ‖2 and ‖ψR‖∞ ≤
a

|R|

)

≤ e−
c

a
2
|E||R|2ε2



Improved Large Deviation Bound

Putting them together and using

P r (! ! R " " ! 2 # #) $ P r (! ! R " " ! 2 # #and ! ! R ! ! $ a/ |R|)

! P r
!

" ! R " ! #
a

|R|

"

P r (A and B ) ! P r (A) " P r (B c)

= e! c
a 2 |E || R |2 ! 2

+ e! C ! |E |

Thus: P r
!

! ! R " " ! 2 #
a

|R|

"
$ e! c! a|E |



Still not enough
So we have

From epsilon-net we get

P r
!

! ! R " " ! 2
2 #

a
|R|2

"
$ e! ca|E |

P r
!

max
|! !" S

! ! R " " ! 2
2 #

a
|R|2

"
$ e÷c|S| log( |R |) e# ca|E |

Then we find there is a subspace S s.t.

This is a constant away from the result we want...

min
|! !" S

S(! R ) ! log |R| " c#|S|
|E |

log |R|
|R|



3. Improve epsilon-net argument

To complete the proof, we need a way to get rid of the extra
log|R|
factor in the epsilon-net. There are two different approaches here:

1.  we can replace the epsilon-net part by another probabilistic
   argument. This is the idea originally used by Hastings

2.  we can use a chaining argument for epsilon nets (which was
   introduced in this context in Aubrun, Szarek, Werner 10 and attributed 
   to Schechtman, who in turn attributed it to Kolmogorov)



HastingÕs lower bound on the probability

Details on blackboard...

P r |! !

!
! ! R " " ! 2

2 #
a

|R|2

"
# e" c! |S|

!
P r

!
max
|! !# S

! ! R " " ! 2
2 #

÷ca
|R|2

"
" o(1)

"

Comparing to

and remembering |E| = |S|:

P r
!

! ! R " " ! 2
2 #

a
|R|2

"
$ e! ca|E |

P r
!

max
|! !" S

! ! R " " ! 2
2 #

÷ca
|R|2

"
$ o(1)



Open questions
  HastingsÕ counterexample is probabilistic and non-constructive. 

  Can we find explicit counterexamples? 

 The best violations of additivity are of order 10-6. The violations for 
  Renyi entropies, on the other hand, are extensive. Can we find larger      
  violations for the von Neumann entropy?

 Can we find a counterexample to the additivity of the classical capacity? 
  An equivalent problem is to find counterexamples to the regularization of 
  the minimum output entropy.
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