Entanglement Area Law (from Heat Capacity)

Fernando G.S.L. Brandão
University College London

Based on joint work arXiv:1410.XXXX with

Marcus Cramer
University of Ulm

Isfahan, September 2014
Plan

- What is an area law?
- Relevance
- Previous Work
- Area Law from Heat Capacity
Area Law

\[|\psi\rangle \in (\mathbb{C}^2)^\otimes n \quad 4^n \text{ parameters} \]
Area Law

\[|\psi\rangle \in (\mathbb{C}^2)^{\otimes n} \]

4^n parameters

Quantum states on a lattice

\[\mathbb{C}^2 \]

\[\partial R \text{ : boundary of } R \]
\[|R| \text{ : volume of } R \]
\[|\partial R| \text{ : volume of } \partial R \]
Area Law

\[|\psi\rangle \in (\mathbb{C}^2)^\otimes n \]

\[4^n \text{ parameters} \]

Quantum states on a lattice

\[\mathbb{C}^2 \]

\(\partial R \) : boundary of R

\(|R| \) : volume of R

\(|\partial R| \) : volume of \(\partial R \)
Area Law

\[|\psi\rangle \in (\mathbb{C}^2)^\otimes n \]

4^n parameters

Quantum states on a lattice

Def: Area Law holds for \(|\psi\rangle\) if for all \(R\),

\[S(\text{tr}_{R^c}(|\psi\rangle\langle\psi|)) \leq O(|\partial R|) \]

\(\partial R\) : boundary of \(R\)

\(|R|\) : volume of \(R\)

\(|\partial R|\) : volume of \(\partial R\)
When does area law hold?

1st guess: it holds for every low-energy state of local models

\[H = \sum_{<i,j>} H_{i,j}, \quad \|H_{i,j}\| \leq 1 \]

Energy of \(|\psi\rangle\): \(\langle \psi | H | \psi \rangle \)

\[H = \sum_{k} E_k |E_k\rangle\langle E_k|, \quad E_0 \leq E_1 \leq \ldots \]

\(E_0 \): ground energy

\(|E_0\rangle \): ground state
When does area law hold?

1st guess: it holds for every low-energy state of local models

(Irani ‘07, Gottesman&Hastings ‘07)

There are 1D models with volume scaling of entanglement in groundstate
When does area law hold?

1st guess: it holds for every low-energy state of local models (Irani ‘07, Gottesman&Hastings ‘07)
There are 1D models with volume scaling of entanglement in groundstate

Must put more restrictions on Hamiltonian/State!

- spectral gap
- Correlation length
- specific heat
1D: Area Law $S_{\alpha}, \alpha < 1$

Rényi Entropies:

$$S_{\alpha}(\rho) := \frac{1}{1 - \alpha} \log \text{tr}(\rho^\alpha)$$

Matrix-Product-State:

$$|\psi\rangle = \sum_{i_1, \ldots, i_n} \text{tr}(A_{i_1} \ldots A_{i_n}) |i_1, \ldots, i_n\rangle$$

Good Classical Description (MPS)

(FNW ’91 Vid ’04)
Relevance

1D:
Area Law
\(S_\alpha, \, \alpha < 1 \)

(appears to be connected with good tensor network description; e.g. PEPS, MERA)

Renyi Entropies:
\[
S_\alpha(\rho) := \frac{1}{1 - \alpha} \log \text{tr}(\rho^\alpha)
\]

Matrix-Product-State:
\[
|\psi\rangle = \sum_{i_1, \ldots, i_n} \text{tr}(A_{i_1} \ldots A_{i_n}) |i_1, \ldots, i_n\rangle
\]
Previous Work

(Bekenstein ‘73, Bombelli et al ‘86,)
Black hole entropy

(Vidal et al ‘03, Plenio et al ’05, ...)
Integrable quasi-free bosonic systems and spin systems :

see Rev. Mod. Phys. (Eisert, Cramer, Plenio ‘10)
Previous Work

(Bekenstein ‘73, Bombelli et al ‘86,)
Black hole entropy

(Vidal et al ‘03, Plenio et al ‘05, ...)
Integrable quasi-free bosonic systems and spin systems

see Rev. Mod. Phys. (Eisert, Cramer, Plenio ‘10)

2nd guess: Area Law holds for

1. Groundstates of gapped Hamiltonians
2. Any state with finite correlation length
Gapped Models

Def:

<table>
<thead>
<tr>
<th>(gap)</th>
<th>$\Delta(H) := E_1(H) - E_0(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(gapped model)</td>
<td>${H_n}$ gapped if $\exists \Delta > 0, \Delta(H_n) \geq \Delta \ \forall \ n$</td>
</tr>
</tbody>
</table>
Gapped Models

Def:
(gap) \(\Delta(H) := E_1(H) - E_0(H) \)
(gapped model) \(\{H_n\} \) gapped if \(\exists \Delta > 0, \Delta(H_n) \geq \Delta \forall n \)

\[
|\langle \psi | A \otimes B | \psi \rangle - \langle \psi | A | \psi \rangle \langle \psi | B | \psi \rangle| \leq 2^{-\text{dist}(A,B)/\xi}
\]
Gapped Models

Def:

(gap) \[\Delta(H) := E_1(H) - E_0(H) \]

(gapped model) \(\{H_n\} \) gapped if \(\exists \Delta > 0, \Delta(H_n) \geq \Delta \ \forall \ n \)

- (Has '04)
- finite correlation length
- Exponential small heat capacity

\[|\langle \psi | A \otimes B | \psi \rangle - \langle \psi | A | \psi \rangle \langle \psi | B | \psi \rangle| \leq 2^{-\text{dist}(A,B)/\xi} \]

\[c(T) \leq T^{-\nu} e^{-\Delta/T}, \quad T \leq T_c \]
Area Law?

Intuition: Finite correlation length should imply area law

\[l = O(\xi) \]

\[
\rho_{XZ} = \rho_X \otimes \rho_Z
\]

(Uhlmann)

\[
|\psi\rangle_{XYZ} = \left(U_{Y_1Y_2 \rightarrow Y} \otimes I_{XZ} \right) |\pi\rangle_{XY_1} |\nu\rangle_{Y_2Z}
\]
Area Law?

Intuition: Finite correlation length should imply area law

\[l = O(\xi) \]

Obstruction: Data Hiding

\[\rho_{x\psi} - s \rho_x \overline{\rho_x : Z} \rho_{xz} \leq 2^{-l/\xi}, \text{ but } \| \rho_{xz} - \rho_x \otimes \rho_z \|_1 \geq 1 \]
Area Law in 1D: A Success Story

- gap
 - (Has '04) \(\xi < O(1/\Delta) \)

- finite correlation length

- area law
 - (FNW '91 Vid '04)
 - (Hastings '07) \(S < e^{O(1/\Delta)} \)
 - (Arad et al '13) \(S < O(1/\Delta) \)

- MPS
Area Law in 1D: A Success Story

- **Gap**: $\xi < O(1/\Delta)$ (Has ’04)
- **Finite correlation length**: $S < e^{O(\xi)}$ (B, Hor ’13)
- **Area law**: $S < O(1/\Delta)$ (Arad et al ’13)
- **MPS**: $S < e^{O(1/\Delta)}$ (Hastings ’07)

(FNW ’91 Vid ’04)
Area Law in 1D: A Success Story

- **gap**
 - $\xi < O(1/\Delta)$ (Has ‘04)

- **finite correlation length**
 - $S < e^{O(\xi)}$ (B, Hor ‘13)

- **area law**
 - $S < O(1/\Delta)$ (Hastings ‘07)
 - $S < e^{O(1/\Delta)}$ (Arad et al ‘13)

- **MPS**
 - (FNW ‘91 Vid ‘04)

(Has ‘07) **Analytical** (Lieb-Robinson bound, filtering function, Fourier analysis)

(Arad et al ‘13) **Combinatorial** (Chebyshev polynomial)

(B., Hor ‘13) **Information-theoretical** (entanglement distillation, single-shot info theory)
Area Law in 1D: A Success Story

Efficient algorithm (Landau et al ‘14)

- gap
 - (Has ‘04) $\xi < O(1/\Delta)$

finite correlation length
- (Has ‘07) $S < e^{O(1/\Delta)}$
- (Arad et al ‘13) $S < O(1/\Delta)$

area law
- (B, Hor ‘13) $S < e^{O(\xi)}$

MPS
- (FNW ‘91 Vid ‘04)

(Has ‘07) **Analytical** (Lieb-Robinson bound, filtering function, Fourier analysis)

(Arad et al ‘13) **Combinatorial** (Chebyshev polynomial)

(B., Hor ‘13) **Information-theoretical** (entanglement distillation, single-shot info theory)
Area Law in 1D: A Success Story

2nd guess: Area Law holds for

1. Groundstates of gapped Hamiltonians
2. Any state with finite correlation length
Area Law in 1D: A Success Story

2nd guess: Area Law holds for

1. Groundstates of gapped Hamiltonians 1D, YES! >1D, OPEN
2. Any state with finite correlation length 1D, YES! >1D, OPEN
Area Law from Specific Heat

Statistical Mechanics 1.01

Gibbs state: \[\rho_T := \frac{1}{Z_T} e^{-\frac{H}{T}}, \quad Z_T = \text{tr}(e^{-\frac{H}{T}}) \]
Area Law from Specific Heat

Statistical Mechanics 1.01

Gibbs state: \[\rho_T := \frac{1}{Z_T} e^{-H/T}, \quad Z_T = \text{tr}(e^{-H/T}) \]

energy density: \[e(T) := \frac{1}{N} \text{tr}(H \rho_T) \]
Statistical Mechanics 1.01

Gibbs state: \[\rho_T := \frac{1}{Z_T} e^{-H/T}, \quad Z_T = \text{tr}(e^{-H/T}) \]

energy density: \[e(T) := \frac{1}{N} \text{tr}(H \rho_T) \]

entropy density: \[s(T) := \frac{1}{N} S(\rho_T) \]
Area Law from Specific Heat

Statistical Mechanics 1.01

Gibbs state: \[\rho_T := \frac{1}{Z_T} e^{-H/T}, \quad Z_T = \text{tr}(e^{-H/T}) \]

\textbf{energy density:} \[e(T) := \frac{1}{N} \text{tr}(H \rho_T) \]

\textbf{entropy density:} \[s(T) := \frac{1}{N} S(\rho_T) \]

\textbf{Specific heat capacity:} \[c(T) := \left. \frac{\partial u(T')}{\partial T'} \right|_{T' = T} \]

\[= \frac{1}{NT^2} \left(\text{tr}(H^2 \rho_T) - \text{tr}(H \rho_T)^2 \right) \]
Area Law from Specific Heat

Specific heat at T close to zero:

Gapped systems: $c(T) \leq T^{-\nu} e^{-\Delta/T}$
(superconductor, Haldane phase, FQHE, ...)

Gapless systems: $c(T) \leq T^\gamma$
(conductor, ...)
Thm Let H be a local Hamiltonian on a d-dimensional lattice $\Lambda := [n]^d$. Let $(R_1, ..., R_N)$, with $N = n^d/l^d$, be a partition of Λ into cubic sub-lattices of size l (and volume l^d).

1. Suppose $c(T) \leq T^{-\nu} e^{-\Delta/T}$ for every $T \leq T_c$. Then for every ψ with $\langle \psi | H | \psi \rangle \leq n^d/l$

$$
\frac{1}{N} \sum_{i=1}^{N} S(\text{tr}_{\Lambda \setminus R_i}(|\psi\rangle\langle \psi|)) \leq O(l^{d-1} \log(l))
$$

$E_0(H) = 0$
Thm Let H be a local Hamiltonian on a d-dimensional lattice $\Lambda := [n]^d$. Let (R_1, \ldots, R_N), with $N = n^d/l^d$, be a partition of Λ into cubic sub-lattices of size l (and volume l^d).

2. Suppose $c(T) \leq T^\nu$ for every $T \leq T_c$. Then for every ψ with $\langle \psi | H | \psi \rangle \leq n^d/l$

\[
\frac{1}{N} \sum_{i=1}^{N} S(\text{tr}_{\Lambda \setminus R_i}(|\psi\rangle\langle\psi|)) \leq O(l^{d-1+\frac{1}{1+\nu}})
\]

$E_0(H) = 0$
Why?

Free energy:

\[
F_T(\sigma) := \text{tr}(H\sigma) - TS(\sigma)
\]

Variational Principle:

\[
F_T(\sigma) \geq F_T(\rho_T)
\]
Why?

Free energy:

\[F_T(\sigma) := \text{tr}(H\sigma) - TS(\sigma) \]

Variational Principle:

\[F_T(\sigma) \geq F_T(\rho_T) \]

Let \(\pi := \text{tr}_{R_1}(|\psi\rangle\langle\psi|) \otimes \ldots \otimes \text{tr}_{R_1}(|\psi\rangle\langle\psi|) \)
Why?

Free energy:

$$F_T(\sigma) := \text{tr}(H\sigma) - TS(\sigma)$$

Variational Principle:

$$F_T(\sigma) \geq F_T(\rho_T)$$

Let \(\pi := \text{tr}_{R_1} (|\psi\rangle\langle\psi|) \otimes \ldots \otimes \text{tr}_{R_1} (|\psi\rangle\langle\psi|)\)

\[
\text{tr}(\pi H) \leq \langle\psi|H|\psi\rangle + \left(\frac{n^d}{l^d}\right)c'l^{d-1} \leq cn^d/l
\]
Why?

Free energy:

\[F_T(\sigma) := \text{tr}(H\sigma) - T S(\sigma) \]

Variational Principle:

\[F_T(\sigma) \geq F_T(\rho_T) \]

Let \(\pi := \text{tr}_{R_1}(|\psi\rangle\langle\psi|) \otimes \ldots \otimes \text{tr}_{R_1}(|\psi\rangle\langle\psi|) \)

\[\text{tr}(\pi H) \leq \langle\psi|H|\psi\rangle + \left(\frac{n^d}{l^d}\right) c' l^{d-1} \leq cn^d/l \]

By the variational principle, for \(T \) s.t. \(u(T) \leq c/l : S(\pi) \leq l^d S(T) \)
Why?

Free energy:

\[F_T(\sigma) := \text{tr}(H\sigma) - TS(\sigma) \]

Variational Principle:

\[F_T(\sigma) \geq F_T(\rho_T) \]

Let \(\pi := \text{tr}_{R_1}(|\psi\rangle\langle\psi|) \otimes \ldots \otimes \text{tr}_{R_1}(|\psi\rangle\langle\psi|) \)

\[\text{tr}(\pi H) \leq \langle \psi | H | \psi \rangle + \left(\frac{n^d}{l^d} \right) c'l^{d-1} \leq cn^d/l \]

By the variational principle, for \(T \) s.t. \(u(T) \leq c/l : S(\pi) \leq l^d s(T) \)

Result follows from: \(s(T) = s(0) + \int_0^T \frac{c(T')}{{T'}} \, d{T'} \)
Summary and Open Questions

Summary:

Assuming the specific heat is “natural”, area law holds for every low-energy state of gapped systems and “subvolume law” for every low-energy state of general systems

Open questions:

- Can we prove a strict area law from the assumption on $c(T) \leq T^{-\nu} e^{-\Delta/T}$?
- Can we improve the subvolume law assuming $c(T) \leq T^\nu$?
- Are there natural systems violating one of the two conditions?
- Prove area law in >1D under assumption of (i) gap (ii) finite correlation length
- What else does an area law imply?