Quantum Darwinism is Generic

Fernando G.S.L. Brandão

University College London

Joint work with

Marco Piani and Pawel Horodecki

arXiv:1310.8640

Classical from Quantum

How the classical world we perceive emerges from quantum mechanics?

Decoherence: lost of coherence due to interactions with environment

Classical from Quantum

How the classical world we perceive emerges from quantum mechanics?

Decoherence: lost of coherence due to interactions with environment

We only learn information about a quantum system indirectly by accessing a small part of its environment.

E.g. we see an object by observing a tiny fraction of its photon

environment

Quantum Darwinism in a Nutshell

(Zurek '02; Blume-Kohout, Poulin, Riedel, Zwolak,)

Objectivity of observables: Observers accessing a quantum system by probing part of its environment can only learn about the measurement of a *preferred observable*

Quantum Darwinism in a Nutshell

(Zurek '02; Blume-Kohout, Poulin, Riedel, Zwolak,)

Objectivity of observables: Observers accessing a quantum system by probing part of its environment can only learn about the measurement of a *preferred observable*

Objectivity of outcomes: Different observes accessing different parts of the environment have almost full information about the preferred observable and *agree* on what they observe

Quantum Darwinism in a Nutshell

(Zurek '02; Blume-Kohout, Poulin, Riedel, Zwolak,)

Objectivity of observables: Observers accessing a quantum system by probing part of its environment can only learn about the measurement of a *preferred observable*

Objectivity of outcomes: Different observes accessing different parts of the environment have almost full information about the preferred observable and *agree* on what they observe

$$|\phi\rangle_{B_1,...,B_k} := e^{-itH_{SE}}|\psi\rangle_S \otimes |0\rangle_E$$

 ϕ_{B_j} only contains information about the measurement of $\{M_k\}_k$ on $|\psi\rangle_S$

And almost all ${\bf B_j}$ have close to full information about the outcome of the measurement $\{M_k\}_k$

Quantum Darwinism: Examples

(Riedel, Zurek '10) Dieletric sphere interacting with photon bath: Proliferation of information about the position of the sphere

:

(Blume-Kohout, Zurek '07) Particle in brownian motion (bosonic bath): Proliferation of information about position of the particle

Is quantum Darwinism a general feature of quantum mechanics?

No: Let
$$|\phi\rangle_{B_1,...,B_k}:=e^{-itH_{SE}}|\psi\rangle_S\otimes|0\rangle_E$$

For very mixing evolutions U = e^{-itH} , ϕ_{B_j} is almost maximally mixed for B_i as big as half total system size

Information is hidden (again, QECC is an example)

Is quantum Darwinism a general feature of quantum mechanics?

No: Let
$$|\phi\rangle_{B_1,...,B_k}:=e^{-itH_{SE}}|\psi\rangle_S\otimes|0\rangle_E$$

For very mixing evolutions U = e^{-itH} , ϕ_{B_j} is almost maximally mixed for B_i as big as half total system size

Information is hidden (again, QECC is an example)

Objectivity of Observables is Generic

thm (B., Piani, Horodecki '13) For every $\Lambda:S\to B_1,\ldots,B_n$, there exists a measurement {M_k} on S such that for almost all j,

$$\Lambda_{j}(\rho) := \operatorname{tr}_{B_{j}} \circ \Lambda(\rho) \approx \sum_{j} \operatorname{tr}(M_{j}\rho) \sigma_{j,k}$$
$$O(d_{s}^{3} n^{-1/3})$$

Proof by monogamy of entanglement and quantum information-theoretic techniques (blackboard)

Thanks!