Quantum Darwinism is Generic

Fernando G.S.L. Brandão
University College London

Joint work with
Marco Piani and Pawel Horodecki

arXiv:1310.8640

February 2014
Classical from Quantum

How the classical world we perceive emerges from quantum mechanics?

Decoherence: lost of coherence due to interactions with environment
Classical from Quantum

How the classical world we perceive emerges from quantum mechanics?

Decoherence: lost of coherence due to interactions with environment

We only learn information about a quantum system indirectly by accessing a small part of its environment.

E.g. we see an object by observing a tiny fraction of its photon environment
Quantum Darwinism in a Nutshell

(Zurek ’02; Blume-Kohout, Poulin, Riedel, Zwolak,

Objectivity of observables: Observers accessing a quantum system by probing part of its environment can only learn about the measurement of a *preferred observable*
Quantum Darwinism in a Nutshell

(Zurek ’02; Blume-Kohout, Poulin, Riedel, Zwolak,)

Objectivity of observables: Observers accessing a quantum system by probing part of its environment can only learn about the measurement of a *preferred observable*

Objectivity of outcomes: Different observers accessing different parts of the environment have almost full information about the preferred observable and *agree* on what they observe
Quantum Darwinism in a Nutshell

(Zurek ’02; Blume-Kohout, Poulin, Riedel, Zwolak,)

Objectivity of observables: Observers accessing a quantum system by probing part of its environment can only learn about the measurement of a *preferred observable*

Objectivity of outcomes: Different observes accessing different parts of the environment have almost full information about the preferred observable and *agree* on what they observe

\[|\phi\rangle_{B_1,\ldots,B_k} := e^{-itH_{SE}} |\psi\rangle_{S} \otimes |0\rangle_{E} \]

\(\phi_{B_j} \) only contains information about the measurement of \(\{M_k\}_k \) on \(|\psi\rangle_{S} \)

And almost all \(B_j \) have close to full information about the outcome of the measurement \(\{M_k\}_k \)
Quantum Darwinism: Examples

(Riedel, Zurek ‘10) Dielectric sphere interacting with photon bath:
Proliferation of information about the position of the sphere

(Blume-Kohout, Zurek ‘07) Particle in brownian motion (bosonic bath):
Proliferation of information about position of the particle

Is quantum Darwinism a general feature of quantum mechanics?

No: Let $|\phi\rangle_{B_1,...,B_k} := e^{-itH_{SE}} |\psi\rangle_S \otimes |0\rangle_E$

For very mixing evolutions $U = e^{-itH}$, ϕ_{B_j} is almost maximally mixed
for B_j as big as half total system size

Information is hidden (again, QECC is an example)
Is quantum Darwinism a general feature of quantum mechanics?

No: Let $|\phi\rangle_{B_1,\ldots,B_k} := e^{-itH_{SE}}|\psi\rangle_S \otimes |0\rangle_E$

For very mixing evolutions $U = e^{-itH}$, ϕ_{B_j} is almost maximally mixed for B_j as big as half total system size

Information is hidden (again, QECC is an example)
Objectivity of Observables is Generic

thm (B., Piani, Horodecki ‘13) For every $\Lambda : S \rightarrow B_1, \ldots, B_n$, there exists a measurement $\{M_k\}$ on S such that for almost all j,

$$
\Lambda_j(\rho) := \text{tr}_{B_j} \circ \Lambda(\rho) \approx \sum_{j} \text{tr}(M_j \rho) \sigma_{j,k}
$$

$$
O(d_S^3 n^{-1/3})
$$

Proof by monogamy of entanglement and quantum information-theoretic techniques (blackboard)
Thanks!